
Requirements, Design, and Development

of a Rapidly Reconfigurable, Photo-Realistic,

Virtual Cockpit Prototype

THESIS

Terry A. Adams
Captain, USAF

IAppmed fJ pubiw mMejw I
I Dbf1buUm UniwAbd

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Farce Base, Ohio

AFIT/GCS/ENG/96D-02

Requirements, Design, and Development

of a Rapidly Reconfigurable, Photo-Realistic,

Virtual Cockpit Prototype

THESIS

Terry A. Adams
Captain, USAF

AFIT/GCS/ENG/96D-02

19970328 037

Approved for public release, distribution unlimited.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the U.S. Government.

AFIT/GCS/ENG/96D-02

Requirements, Design, and Development

of a Rapidly Reconfigurable, Photo-Realistic,

Virtual Cockpit Prototype

THESIS

Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial fulfillment of the Requirements for the Degree of

Master of Science in Computer Systems

Terry A. Adams, B.S.

Captain, USAF

December, 1996

Approved for public release, distribution unlimited.

Acknowledgments

First and foremost, I would like to thank Courtney, my wife, for all her love and understanding

during my AFIT experience. She gave me the encouragement I needed to get through the long process of

developing this thesis project. Without her taking care of our home and family, I could not have spent the

many hours needed to complete my project. Any success during my AFIT stay is truly as much hers as it is

mine. I would also like to thank my son, Nicholas, for all the times he ran to the door and shouted "I love

you Daddy" after arriving home from another long day in the computer lab.

I would like to thank all the fellow Graphics Students for their help and assistance throughout the

long process of completing our research. They let me bounce ideas off them and provided important

feedback during this project's software development effort. I would also like to thank my fellow Thursday

afternoon Wallyball players, for the fun and a great way to let off some steam.

Finally, I would like to thank my thesis committee, Lieutenant Colonel Stytz, Major Shomper, and

Major Banks, for the guidance they provided during my Virtual Cockpit research. I appreciate the time and

effort they put forth in reviewing and improving this thesis.

ii

Table of Contents

Page

Acknowledgments..1

List of Figures... vi

List of Tables... viii

Abstract.. ix

1. Introduction... 1-1

1. 1. Overview.. 1-2

1.2. Thesis Statement .. 1-3

1.3. Scope ... 1-4

1.4. Assumptions.. 1-4

1.5. Standards 1-4

1.6. Approach/Methodology... 1-5

1.7. Materials and Equipment .. 1-6

1.8. Thesis Organization... 1-6

2. Background ... 2-1

2. 1. Virtual Reality... 2-1

2.2. Flight Simulators.. 2-3

2.3. Distributed Simulation.. 2-6

2.4. Software Architectures.. 2-11

2.5. Physical Modeling... 2-16

2.6. Aircraft Simulator Reconfigurability Research ... 2-18

2.7. Virtual Cockpit .. 2-19

iii

2.8. Conclusion.. 2-20

3. Requirements and Design ... 3-1

3. 1. Reconfigurable Computer Architecture ... 3-4

3.2. Reconfigurable Cockpit Geometry .. 3-6

3.3. Reconfigurable Simulation Components.. 3-7

3.4. Replacing ObjectSim Functionality .. 3-1 1

3.5. Replacing AFIT Pod Interface ... 3-12

3.6. Distributed Simulation Interface ... 3-13

3.7. Conclusion.. 3-14

4. Implementation.. 4-1

4. 1. Reconfigurable Software Architecture .. 4-1

4.2. Reconfigurable Cockpit Geometry Models... 4-6

4.3. Reconfigurable Simulation Components .. 4-16

4.4. Replacing ObjectSim Functionality .. 4-22

4.5. Replacing ARIT Pod Interface ... 4-24

4.6. Distributed Simulation Interface ... 4-27

4.7. Conclusion.. 4-30

5. Result.. 5-1

5. 1. Reconfigurable Computer Architecture ... 5-1

5.2. Reconfigurable Cockpit Geometry .. 5-5

5.3. Reconfigurable Simulation Components.. 5-7

5.4. Replacing ObjectSim Functionality .. 5-10

5.5. Replacing AFIT Pod Interface ... 5-11

5.6. Distributed Simulation Interface ... 5-12

5.7. Conclusion.. 5-14

iv

6. Conclusions and Future Work ... 6-i

6. 1. Accomplishments ... 6-1

6.2. Conclusions.. 6-2

6.3. Future Work.. 6-5

6.4. Conclusion.. 6-7

Appendix A: F- 16 Virtual Cockpit Simulator Pictures ... A-1

Appendix B: Common Object DataBase Code Listings.. B-i

B.i1. Source Code: commonobjdb.h ... B-i

B.2. Source Code: commonobjdb.h ... B-5

B.3. Source Code: doublebuffer.h ... B-il

Bibliography.. BIB- I

Vita .. VITA- I

V

List of Figures

Figure Page

2-1. Exterior of Dome Flight Simulator .. 2-5

2-2. Interior of Dome Flight Simulator .. 2-5

2-3. LAM ARS Flight Simulator .. 2-6

2-4. Comm unication Approaches .. 2-12

2-5. CODB Rum baugh Diagram ... 2-14

2-6. Perform er Node Hierarchy ... 2-17

3-1. Rumbaugh Diagram of Top-Level VC Design ... 3-3

3-2. Radar Class with CODB Input and Output Structures ... 3-9

3-3. 1995 VC and ObjectSim Performer Tree ... 3-12

4-1. RRVC Airplane Class .. 4-5

4-2. Placing The Numbers For The Altim eter Into An Im age ... 4-9

4-3. Inverting The Im age To M ake Letters W hite And Background Black .. 4-10

4-4. Creating A Second Im age That Is Entirely W hite .. 4-11

4-5. Saving The Second Image As An RGBA File Using The First Image As Alpha Channel 4-12

4-6. Single Altimeter Dial in DW B ... 4-13

4-7. Entire F-16 Altim eter in DW B ... 4-14

4-8. Altimeter Perform er Tree ... 4-15

4-9. C++ AeroM odel Interface .. 4-18

4-10. C++ CODBAeroM odel Interface ... 4-19

4-11. CODB AircraftStruct Container ... 4-19

4-12. Simple Radar M odel Interface ... 4-20

4-13. Comparison of LocalCoordStruct and RadarStruct .. 4-22

vi

4-14. RRVC's Top-Level Perform er Tree ... 4-25

4-15. Comparison of AFIT Pod Interface and Selection M anager Interface ... 4-26

4-16. Send and Receive DIS CODB Containers ... 4-28

5-1. F-16 Aircraft .. 5-2

5-2. F-16 Instrum ent Panel .. 5-2

5-3. F- 15 Aircraft .. 5-3

5-4. F-15 Instrument Panel .. 5-3

5-5. Sample Radar Display on M ulti-Function Display .. 5-9

5-6. M odSAF Terrain with Four Tanks ... 5-13

5-7. RRVC Fort Knox Terrain .. 5-13

A-1. F-16 Cockpit Diagram [OGDE94] ... A-i

A-2. Entire F- 16 Virtual Cockpit Instrument Panel .. A-2

A-3. Top Right Portion of F-16 Virtual Cockpit .. A-2

A-4. Bottom Right Portion of F- 16 Virtual Cockpit .. A-3

A-5. Top Center Portion of F- 16 Virtual Cockpit .. A-3

A-6. M iddle Center Portion of F-16 Virtual Cockpit ... A-4

A-7. Bottom Center Portion of F-16 Virtual Cockpit ... A-4

A-8. Top Left Portion of F-16 Virtual Cockpit .. A-5

A-9. Bottom Left Portion of F-16 Virtual Cockpit ... A-5

vii

List of Tables

Table Page

2-1. Entity State PDU Format ... 2-8

2-2. DIS PDU Families and Types .. 2-9

3-1. Rapidly Reconfigurable Virtual Cockpit Requirements .. 3-2

4-1. Airplane Class Methods and Functionality ... 4-5

5-1. Reconfigurable Software Architecture's Requirements. .. 5-1

5-2. Reconfigurable Cockpit Geometry Requirements .. 5-5

5-3. Reconfigurable Simulation Components' Requirements ... 5-7

5-4. Replacing ObjectSim Functionality Requirements .. 5-9

5-5. Replacing AFIT Pod Interface Requirements ... 5-10

5-6. Distributed Simulation Interface Requirements .. 5-11

viii

Abstract

The United States Air Force uses aircraft flight simulators for pilot training and mission rehearsal.

They use a variety of simulators for this task ranging with prices ranging from $400,000 to $30,000,000.

These simulators have specialized hardware that restricts reuse of their components and increases

maintenance costs. Air Education and Training Command wants to reduce simulators cost and improve

availability to the operational commands by supporting research in virtual reality flight simulators.

This thesis looks at the development of a reconfigurable virtual cockpit in a distributed virtual

environment that can be used for different aircraft as well as training scenarios. The thesis effort builds on a

F-15 virtual cockpit previously developed at AFIT by creating a F-16. The Rapidly Reconfigurable Virtual

Cockpit (RRVC) allows users to switch between an F-15 and F-16 during live simulation. All software

models and aircraft geometry files are updated to reflect the current aircraft. The ability of a distributed

virtual environment to support two unique aircraft flight simulators in a single application is encouraging.

With the development of more aircraft, a single application can be provided to the operational pilot

community that would support many aircraft at a fraction of the cost of today's flight simulators.

ix

Requirements, Design, and Development of a Rapidly Reconfigurable,

Photo-Realistic, Virtual Cockpit Prototype

1. Introduction

One of the United States Air Force's objectives is to maintain air superiority. The Air Force

achieves this by recruiting and training quality pilots. The Air Force sends pilots through an extensive

training program that teaches them how to fly military aircraft. Pilots then go through an additional training

program for the specific aircraft they will be flying. The training period can last up to 3 years and the cost

of this training can exceed $6,000,000. Pilots must continue to practice or they begin to forget the skills

they have learned. Additionally, they must continue to learn new skills associated with a particular task or

air combat mission. Unfortunately, practice is expensive and military budgets have been cut dramatically

since the late 1980's. Simulators provide a less expensive way to train pilots then with conventional

aircraft. Simulator's capabilities are constantly improving and offer an excellent tool for training.

Unfortunately, the simulator's increase in reality has come at cost and not every unit can afford to have their

own simulator. The overall goal of the Virtual Cockpit research is to develop an inexpensive aircraft

simulator using conventional workstations, virtual reality, and distributed simulation.

1-1

1.1. Overview

Aircraft simulators have a wide range of capabilities and costs. An F-15 Weapons System Trainer

(WST) costs the Air Force approximately $30,000,000 [OLSE96]. The F-15 WST is essentially a copy of

the aircraft's cockpit and supports all the functionality of an operational F-15 aircraft. Each F-15 WST is

specific not only to a model of aircraft, such as an F-15C; but, also specific to the block number of the

aircraft (different versions of the same model). However, because of the large cost associated with this type

of simulator the USAF only has a few WST's, which limits the amount of training that can take place on

such systems. The sponsor for this research, Air Education and Training Command (AETC), is

investigating ways to reduce the cost of simulators and increase their availability to pilots.

The rapid expansion in capabilities of graphics workstations has led to an explosion in modeling

and simulation technology. Currently, the Air Force uses this technology to build simulators that allow a

pilot to train in a particular aircraft. Known as Weapon Tactics Trainers (WTT) and Unit Training Devices

(UTD), these simulators are good representations of a particular aircraft and cost anywhere from $400,000

to $800,000 [OLSE96]. Both the WTT and UTD contain limited out-the-window imagery, with only a

small field of view displayed directly in front of the cockpit. With the arrival of virtual reality and

distributed simulations, developing an aircraft simulation that can interact with other virtual aircraft all over

the world in realistic scenarios is now possible [SCRI94].

The Air Force Institute of Technology's (AFIT) Virtual Cockpit (VC) is an ongoing research effort

to produce a realistic, less expensive, virtual aircraft cockpit that can be use for pilot training. The VC's

goal is to create a virtual reality simulation that can be used to train pilots in the use of aircraft displays and

controls at a small fraction of the cost of a fully functional, WST simulator. Functionality in the VC, as

described by Diaz, includes a low-fidelity aircraft dynamics model, photo-realistic cockpit displays for a

single aircraft, out-the-window scenery, limited weapons' capabilities, throttle and stick input devices, and

support for distributed simulations [DIAZ94]. The Virtual Cockpit's current configuration is an F-15,

including aerodynamics, displays, sensors, and weapons. Development of the virtual cockpit's current

1-2

capabilities has been the product of several previous efforts [SWIT92] [ERIC93] [GERH93] [DIAZ94]

[MCCA94] [SCHN95]. Additionally, work from both AFIT and Naval Postgraduate School provided both

support and a framework for the development of the VC [COOK92] [SHEA92] [SNYD93] [KEST94]. The

VC immerses the pilot into a virtual environment with a helmet-mounted display (HMD). The HMD not

only allows pilots to look at their cockpit displays, it also allows them to view 360 degrees of imagery. The

HMD provides an inexpensive alternative to million-dollar domed simulators, currently widely used to

display such images [GUM94]. A reconfigurable VC will allow a single set of hardware and software to

simulate many types of aircraft at a fraction of the cost to create one military training simulator. The VC

research effort has progressed at a steady pace since inception. The research has shown that creating a

realistic, low cost, virtual single-aircraft simulator is possible. This thesis research project focuses on

expanding the capabilities of the Virtual Cockpit

1.2. Thesis Statement

The AFIT Virtual Cockpit can be reimplemented to allow rapid reconfiguration from one type of

aircraft to another. Reconfiguration includes not only cockpit displays; but, also weapon systems, sensors,

and aircraft aerodynamics. A F-16 Virtual Cockpit will be created to test rapid reconfiguration.

Development of the system will focus on parameterized models to allow each type of virtual aircraft to

share a common software model (i.e., one aircraft aerodynamic model can represent several different

aircraft). The reconfigurable cockpit must support the current functionality of the current F-15 Virtual

Cockpit and extend it to be able to represent a F-16. All F-16 cockpit models created will be photo-realistic

to maintain the realism currently in the VC's F-15 cockpit. For weapons, VC will utilize a Virtual GPS

receiver to steer a guided bomb to target. Finally, the Rapidly Reconfigurable Virtual Cockpit (RRVC)

must support a distributed virtual environment.

1-3

1.3. Scope

Implementation of a reconfigurable cockpit is the primary goal of this research. An architecture

will be created to allow a Virtual Cockpit aircraft to be rapidly reconfigured. The architecture is tested with

two different virtual aircraft, F-15 and F-16. To exactly duplicate all functionality of an actual fighter

cockpit is not the intent of this research. Instead the research focuses on reconfigurability and duplicates

only the F-16's front instrument panel and a portion of its functionality. It is not the purpose of this

research effort to design many different aircraft cockpits. The architecture is designed to support many

different versions of aircraft and provide a framework for any future aircraft cockpit implementations. The

input devices that are currently available in AFIT's Virtual Environments, 3D Medical Imaging, and

Computer Graphics Laboratory, including aircraft throttle, stick, and rudder combination, magnetic head

tracker, mouse, and keyboard provide all input and are used to simulate all aircraft controls. The VC

research will use the Distributed Interactive Simulation standard to interface with other distributed virtual

environments [IEEE93].

1.4. Assumptions

An assumption that impacts the realism of the simulation is that an F-16 stick and throttle can be

adequately simulated using a stick and throttle based on the F-15. All F-16 stick and throttle inputs will be

mapped to a F-15 counterpart.

1.5. Standards

The evaluation of the realism of a real-time, virtual environment is difficult. One standard will be

to maintain an acceptable frame rate (the number of times the screen is redrawn per second). A frame rate

of 15 frames per second will be considered acceptable performance. The Silicon Graphics Performer

statistics tool will measure the frame rate of the simulation [MCLE92]. The goal of the effort is to increase

the number of aircraft, the functionality of those aircraft, and provide the ability to rapidly reconfigure the

1-4

aircraft without affecting the current frame rate of 12-15 frames per second. In addition, the existing photo-

realistic cockpit displays will be used as the standard for realism in the new aircraft cockpit that will be

created. The entire application will be compared with the previous VC for performance in both the time to

execute the model and the accuracy of the model. The simulation must also support the DIS standard

[IEEE93].

1.6. Approach/Methodology

The development effort for a Rapidly Reconfigurable Virtual Cockpit can be broken down into

four areas: system architecture, performance models, graphical models, and distributed simulation. Each of

these areas will have their own distinct design and implementation issues. The area of primary importance

to the entire development effort is the system architecture and initially most effort will be placed on

developing a suitable system architecture.

1.6.1 System Architecture. The current VC's system architecture will be examined for suitability

to meet this research effort's reconfigurability requirement. An architecture will then be designed that take

the VC's current architecture into account while also considering the need to handle multiple aircraft. The

F-15 currently implemented in the VC will be then transitioned to the new architecture. After transitioning

the current VC, the architectures rapid reconfiguration ability will be tested using a derivative of the current

F-15 (to represent a second aircraft), followed with testing using the newly developed F-16 VC.

1.6.2 Performance Models. All models will be examined for their ability to fit into the new

architecture. The current VC's models will then be redesigned if necessary to match the new architecture.

In an effort to increase the current VC fidelity, a software model for aircraft aerodynamics will be acquired

from the Wright Laboratory's Control Integration and Assessment Branch (WLIFIGD). This model has the

capability to represent many different aircraft. The model will be integrated into the new architecture and

tested for several aircraft. The weapon systems removed from the latest implementation of the VC will be

reintegrated into the aircraft. All of the current and new models will also be made to allow real-time

reconfigurability for different aircraft configurations.

1-5

1.6.3 Graphical Models. Current F-16 simulators and the F-16 System Program Office (SPO) will

be contacted to check availability of any existing models. If no acceptable graphics models of the F-16

exist then new models will be developed using Coryphaeus' Designers Work Bench. Realism will be of

utmost importance and comparison with actual F- 16 aircraft will be accomplished to ensure accuracy of

graphical models

1.6.4 Distributed Simulation. The World State Manager 3.0, developed by Steven Sheasby for AFIT, will

be integrated into the VC. World State Manager 3.0 provides a communication layer between Graphics Lab

applications and the current Distributed Simulation environment, currently DIS. All communication

between the application and network entities will be accomplished using this communication World State

Manager 3.0 will support all necessary DIS PDUs.

1.7. Materials and Equipment

The main piece of equipment needed for this thesis effort is a four-processor Silicon Graphics

Onyx with Reality Engine 2 graphics. Software for the system must include a C++ compiler, Performer 2.0,

and Coryphaeus' Designers Work Bench (DWB) version 3.1. A Thrust Master throttle and stick

combination is required to fly the virtual cockpit. The VC can be viewed through a conventional computer

monitor; however, to enhance the realism a Polhemus Laboratories head-mounted display and a Polhemus

magnetic head tracker is required. All equipment needed for this effort is currently available in AFIT's

Virtual Environments, 3D Medical Imaging, and Computer Graphics Lab.

1.8. Thesis Organization

The six chapters and two appendices in this thesis provide a background of relevant research areas

and a description of the analysis, design, and development of a rapidly reconfigurable virtual cockpit.

Chapter 2 provides an overview of relevant research including virtual reality, flight simulators, software

architectures, distributed simulation, and reconfigurable cockpits. Chapter 3 details the requirements and

the top-level design of the RRVC. Chapter 4 is an overview of the implementation of the design. Chapter 5

1-6

is a discussion of results for the project related to each of the individual project requirements. Finally,

Chapter 6 provides personal conclusions on the research along with a recommendation of areas for future

research. Appendix A consists of several photos of the F-16 VC's cockpit models. Appendix B contains

source code for the Common Object DataBase (CODB), which also contain examples of CODB use.

1-7

2. Background

This chapter will explore areas of research related to the development of a rapidly-reconfigurable

virtual cockpit. Technologies that support this project are virtual reality, flight simulators, distributed

simulations, modeling, and software architectures. The chapter provides a description of these areas along

with current research efforts that are pertinent to this thesis effort. Since the Virtual Cockpit has been

ongoing development in the Graphics Laboratory, the chapter provides a short history of the project.

2.1. Virtual Reality

Considerable knowledge currently exists about virtual reality environments, with many diverse

types of applications completed and under development. "Virtual Reality is a new type of human-computer

interface that aims at the user the illusion of being immersed in a computer generated reality providing a

more direct communication link between users and the problem environment modeled by the computer

system [FIGU93]." Virtual reality was new in 1993 when Figueiredo wrote the article. However, virtual

reality applications exist in a wide range of fields today, from architecture and baseball batting practice to

training radiotherapists and astronauts [CATE95][ANDE93] [ASTH93][MOSH86]. Virtual reality

systems use display devices and input devices that allow natural interaction with the virtual environment.

Display devices include computer monitors, head-mounted displays, head-coupled displays and various

projection systems [BOLA93]. Input devices range from the basic keyboard and mouse, to eye, head, and

hand trackers [STUR94]. Virtual reality systems must provide realistic image quality in real time and

realistic modeling of the various entities in the virtual environment. If graphics and models are unrealistic

then users will not feel as if they are actually participating in the virtual world, that is a critical component

of training.

One interesting virtual environment software application by Andersson is the Virtual Batting Cage

[ANDE93]. This application has two research areas in common with the Virtual Cockpit, virtual reality and

training systems. The Virtual Batting Cage is a virtual environment where a batter uses a real bat to swing at

a virtual ball thrown by a virtual pitcher. The Virtual Batting Cage uses a software model to model the ball

2-1

and a videotaped image of a pitcher to enhance realism. Both a head-mounted display and the real baseball

bat use positional trackers to evaluate the batter's motion. A batting sequence begins with the batter

looking out at the pitcher on the mound, the videotaped pitcher then "pitches" the ball, the batter swings at

the pitch, and finally the system shows whether the batter hit the ball or missed the ball. The computer

accomplishes this by tracking the bat and determining the point of impact with the computer-modeled ball.

The batter can then replay the at-bat, stop the replay at any time, look at ball and bat position, and identify

any mistakes that they made. The system allows situations and pitches that would be extremely difficult to

attain without a virtual environment. Andersson uses a real bat to increase the experience's realism,

because no simulated input device could accurately duplicate a bat. Andersson stresses the significance of

real-game situations for training purposes and the importance of accurate models in a virtual reality

environment. This application has many conditions that are similar those associated with training fighter

pilots including the following:

1. the focus on training in game-like situations (realism) without risk to participants,

2. importance of split-second decisions (real-time performance) in training,

3. the need for realistic input devices, and

4. the need for off-line training analysis in both real-time and slow-motion.

Training a pilot and training a batter are similar in that they are both engaged in dangerous (Condition 1)

highly stressful, split second decision making (Condition 2). For training to be realistic, the interactions

between trainee and simulation must be realistic (Condition 3) and the simulation environment must be

realistic. When undertaking training in rapidly changing situations (100 pitches or a 2 hour combat

mission), an important part of the training experience is the ability to review what took place and the

trainee's reaction. Since the batting trainer and a virtual cockpit have similar design consideration, the

design of the reconfigurable VC will take the batting trainer's considerations into account.

AFIT's Graphics Laboratory is involved in Virtual Reality research and has been for many years.

Students have developed projects such as a Virtual Emergency Room [GARC96] and a Satellite Modeler

[WILL96]. Most of the projects utilize a Head Mounted Display to immerse the user into the application's

2-2

particular computer-generated environment. A head tracker uses the information on where the user is

looking and then the application displays only that portion of the computer generated world. Interaction

with the environment is accomplished via a hand tracker, keyboard, or mouse. The Virtual Cockpit is itself

one of the AFIT's Graphics Laboratory's projects and makes use of many of the same input devices;

however, to enhance the flying experience the VC integrates an aircraft throttle, stick, and rudder device

into the environment as an input device. This input device allows users to interact with the virtual airplane

in the same manner as they would with a real airplane, with a stick, a throttle, and rudders. The stick,

throttle,and rudders give pilots the same input device they would have in the cockpit, increasing the realism

of the virtual environment.

2.2. Flight Simulators

Training is an important part of maintaining operational readiness in the Air Force. The Air Force

widely uses flight simulators as a valuable part of pilot training. Simulators are used for all types of training

from initial pilot training to combat mission rehearsal. The flexibility of simulators allows them to

represent many diverse and dangerous environments without risk to the pilot. Aircraft simulators have a

wide range of capabilities and costs as can be seen from the following descriptions.

2.2.1 Weapons System Trainer. As mentioned in Chapter 1, the WST is the Air Force's highest fidelity

simulator provides all the functionality of an operational F- 15 aircraft. While the functionality of the

cockpit, is identical to an operational F-15, the simulator does have limitations. Even with the great cost

associated with the WST, the system has limited visual cues. To give the feeling of movement, the WST

utilizes a front projection screen, driven by a Silicon Graphics computer, that displays earth and sky

imagery. The display updates the imagery to reflect the aircraft's current orientation and position in the

world or scene. However, this type of display has limitations because it only allows the individual in the

aircraft's front seat to see what is "outside" of the windscreen (the outside environment is generated by the

computer) and only for the small field of view that can be represented with a large screen monitor. While,

the WST has a few limitations such as no motion and limited visual cue, it is the closest thing the Air Force

has to actually flying in a real F-15, while still being on the ground.

2-3

2.2.2 Weapons Tactics Trainers (WTT) and Unit Training Devices (UTD). The huge expense of

WST's has caused the Air Force to look for less expensive alternatives that will still provide realistic

training. At the same time, a rapid increase in capabilities of graphics workstations has led to an explosion

in modeling and simulation technology. Workstations provide a less expensive way to build flight

simulators then the specialized hardware previously required [SWIT92]. Workstations are used to build

simulators that allow a pilot to train in a particular aircraft. Known as Weapon Tactics Trainers (WTT) and

Unit Training Devices (UTD), these simulators are medium fidelity representations of a particular aircraft

and have a hardware cost anywhere from $400,000 for the WTT to $800,000 for the UTD (Note: the cost

of the software is considered a one-time cost and is not included in these costs)[OLSE96]. The W'fTT and

UTD are considered medium fidelity simulators because they do not have all the functionality, in both

cockpit controls and aircraft modeling (i.e., landing gear), associated with an actual operational aircraft.

The primary difference between the WTT and the UTD are the training purpose and aircraft controls. The

UTD is a general purpose training simulator, while the WTT's intent is to train the pilot in a particular

function or aircraft area such as the radar. As a general training device, the UTD has most of the aircraft's

controls, including those switches and dials on the aircraft's left and right consoles. The WTT, on the other

hand, only has the switches and dials required for its specific training task. Both the WTT and UTD

contain limited out-the-window imagery, with only a small field of view displayed directly in front of the

cockpit. The VC is part of the effort to provide low-cost training with the realism necessary to be effective.

2.2.3 Domed Simulators. Domed simulators were created in an effort to increase the realism of flight

simulators. Domed simulators are located inside a sphere as seen in Figure 2-1. Figure 2-2 depicts a

common configuration in which a cockpit is placed in the center of the dome and a computer generated

image of the pilot's out-the-window view is displayed on the inside of the dome. The dome can provide up

to 360 degrees of imagery for the pilot, giving the pilot almost the same field of view as that in an actual

aircraft. The cost of the domed simulator shown is approximately $30 million, including the cost of the

dome structure and the computer equipment necessary to generate the visual displays. The Large

Amplitude, Multimode Aerospace Research Simulator (LAMARS) in Figure 2-3 incorporates motion into

2-4

domed simulators. The LAMARS has five degrees of freedom and can simulate motion up to the limits of

its 30 foot arm. The Flight Simulation Facility in Bldg. 146 at Wright-Patterson Air Force Base contains

both simulators shown. It is important to note that many simulations that take place in the facility do not

use the motion-based dome because motion does not provide a large increase in realism. Engineers in the

facility have found that graphics displayed to pilots provide the necessary motion cues. This fact is of great

interest to the Virtual Cockpit research, because the VC will also have 360 degrees of imagery; but, will

have no other motion cues. The Virtual Cockpit will provide similar visual cues to the pilot at a fraction of

the cost. Therefore, the domed simulator provides a good comparison for the VC.

Figure 2-1. Exterior of Dome Flight Simulator Figure 2-2. Interior of Dome Flight Simulator

2-5

IQ

Figure 2-3 LAMARS Flight Simulator

2.3. Distributed Simulation

Distributed simulation is the ability to support interaction between multiple participants at

geographically separate sites using a network. Currently, the two primary military distributed simulation

architectures are Simulator Networking (SIMNET) and Distributed Interactive Simulation (DIS). A third

architecture, the High Level Architecture (HLA), is currently undergoing definition. SIMNET was one of

the first projects to standardize a wide-area network protocol. SIMNET was used to develop simulations

using hundreds of networked simulators; but, it is not widely used today [MCCA94]. DIS is an extension of

SIMNET and is the network simulation protocol currently being used in most distributed military

simulations. DIS uses a highly standardized format in which all simulators on the network must

communicate using standard messages called Protocol Data Units (PDU) [MCDO911. The HLA

architecture improves on DIS by creating additional message types and allowing more freedom in the type

of communication that may take place between simulators [STAR96]. HLA is currently being developed by

the Defense Modeling and Simulation Office with a projected release date of December 1996.

2.3.1 Distributed Interactive Simulation. The DIS Standard defines distributed interactive simulation as

follows: "DIS is a time and space coherent synthetic representation of world environments designed for

2-6

linking the interactive, free play activities of people in operational exercises[JEEE93]." The following

concepts provide the basis for the DIS architecture:

1. No central computer controls the entire simulation exercise

2. Autonomous simulation applications are responsible for maintaining the state of one or more

simulation entities

3. A standard protocol is used for communicating "ground truth" data

4. Changes in the state of an entity are communicated by simulation applications

5. Perception of events or other entities is determined by the receiving application

6. Dead-reckoning algorithms are used to reduce communications processing. [IEEE93]

DIS is a broadcast protocol that sends packets to all users on the network, because all simulation

applications are responsible for determining the state of the simulation (concept 1). Network entities must

listen to all broadcast data to determine what pieces of information are of interest to them.

2.3.1.1. Data Formats. The standard sends data in a format referred to as a Protocol Data Units

(PDU). Each PDU has a fixed size and format header that includes the following information: protocol

version, DIS exercise identification, type and family of PDU, time stamp, and length of PDU. This

information allows entities on the network to determine items of interest in a particular PDU that has been

received. For instance, if a DIS exercise identification is not consistent with that entity's identification then

the application can ignore the PDU. The DIS Standard provides 27 types of PDU's that a DIS-compliant

simulation uses, see Table 2-2 (DIS PDU Families and Types). An Entity State PDU is the PDU used to

update an entity's position in a simulation, see Table 2-1 (Entity State PDU) [IEEE93].

2-7

Table 2-1 Entity State PDU Format

Field Size (bits) PDU Section PDU Fields
Protocol Version - 8 bit enumeration
Exercise ID - 8 bit unsigned integer
PDU Type - 8 bit enumeration

96 PDU Header Protocol Family - 8 bit enumeration
Time Stamp - 32 bit unsigned integer
Length - 16 bit unsigned integer
Padding - 16 bits unused

Site - 16 bit unsigned integer
48 Entity ID Application - 16 -bit unsigned integer

Entity - 16 bit unsigned integer

8 bit enumeration

8 Force ID 8 bit unsigned integer

8 # of Articulation Parameters (n) Entity Kind - 8 bit enumeration
Domain - 8 bit enumeration

Country - 16 bit enumeration
64 Entity Type Subcategory - 8 bit enumeration

Specific - 8 bit enumeration
Extra - 8 bit enumeration

Entity Kind - 8 bit enumeration
Domain - 8 bit enumeration

64 Alternative Country - 16 bit enumeration
Entity Type Subcategory - 8 bit enumeration

Specific - 8 bit enumeration
Extra - 8 bit enumeration

Entity X Component - 32 bit floating point
96 Linear Y Component - 32 bit floating point

Velocity Z Component - 32 bit floating point

X Component - 64 bit floating point
192 Entity Location Y Component - 64 bit floating point

Z Component - 64 bit floating point

Psi - 32 bit floating point
96 Entity Orientation Theta - 32 bit floating point

Phi - 32 bit floating point

32 Entity Appearance 32 bit record of enumerations
Dead Reckoning Algorithm - 8 bit enumeration

320 Dead Reckoning Parameters Other Parameters - 120 bits unused

Entity Linear Acceleration - 3x32 bit floating point

Entity Angular Velocity - 3x32 bit floating point

96 Entity Character set - 8 bit enumeration
Marking 11 8-bit unsigned integer

32 Capabilities 32 Boolean fields
Parameter Type Designator - 8 bit enumeration

Change - 8 bit unsigned integer

n x 128 Articulation Parameters ID - attached to - 16 bit unsigned integer
Parameter type - 32 bit parameter type record
Parameter value - 64 bit

2-8

Table 2-2. DIS PDU Families and ypes.
Entity Information Interaction Simulation Management Emission Regeneration
Entity State Start/Resume Electromagnetic Emission
Collision Stop/Freeze Designator

Acknowledge
Warfare Action Request Radio Communications
Fire Action Response Transmitter
Detonation Data Query Signal

Set Data Receiver
Logistics Data
Service Request Event Report
Resupply Offer Message
Resupply Received Create Entity
Resupply Cancel Remove Entity
Repair Complete
Repair Response

2.3.1.2. Dead Reckoning. Because of the large amount of data that a DIS exercise sends out, even a

small exercise can overwhelm a network. However, this does not eliminate the importance of accurate

positional data in conducting a realistic combat simulation [SCR194]. One technique to reduce the number

of packets broadcast, while still maintaining accurate positional data for entities in the simulation, is dead-

reckoning. Dead reckoning reduces the amount of network bandwidth needed to pass state information

across the network by calculating a vehicle's future position based on its past state. When a network entity

receives an entity state PDU from another entity (sender), the receiving entity updates the current position

of that entity (receiver). It then begins using the velocity information in the PDU to update that entity's

position. The sender also performs the same calculations. When the sender determines that the calculated

position is not within a predetermined threshold of the actual position, it sends out a new entity state PDU,

with its actual position, to everyone on the network. The receiver then uses this information to update the

entity's state in their simulation. This greatly reduces the traffic on the network [HARV91]. One

disadvantage of this approach is that if an entity continues along a straight path (never changing state) it

would never send out another entity state PDU after sending its initial one. Any new entities that then come

on-line would not know about this straight-path entity. To eliminate this problem, the standard dictates that

each entity in a simulation will send out a PDU at least once every five seconds [IEEE93]. Dead-reckoning

2-9

is an important part of distributed simulation. Both the military and civilian sectors widely use dead-

reckoning to reduce network traffic.

It was originally assumed that dead-reckoning would not be useful for fighter aircraft because of their

rapid state changes (position, orientation, velocities, and accelerations). Harvey and Schaffer refute the

claim that dead reckoning can only be accurate for slow-moving vehicles such as tanks or armored

personnel. They used first-order dead-reckoning (using velocity to compute future vehicle position) and

several allowable error thresholds in their testing [HARV91]. The results found that first order dead

reckoning produces highly accurate position and orientation information [HARV91]. In addition network

traffic can be reduced from 100 packets per second to less than 20 packets per second, a reduction of over

80% [HARV9 1].

Singhal and Cheriton propose an alternative method to reduce network traffic using a history-based

protocol [SING95]. Their proposed solution is similar to dead-reckoning in that it uses past data about the

aircraft to predict future position; however, it uses the information differently. Instead of predicting future

positions using velocities and accelerations, the authors use only position information. Their algorithm

performs a curve-fit analysis based on position to decide where the entity will be and when to broadcast new

state updates. This protocol has an advantage over dead-reckoning because it only requires network to send

out position information over the network, reducing the amount of bandwidth needed for state updates by

66%. Dead-reckoning requires the network to broadcast position, velocity, and sometimes acceleration

data. In traditional dead-reckoning, when a simulator receives a new entity state PDU, all simulations on

the network update the position of that entity to its newly received true position. However, the curve-fitting

algorithm's converges the entity's new state with the path calculated in the curve-fit approach. This

reduces the amount of jumpiness that occurs in traditional dead-reckoning upon receipt of a new entity state

PDU. The authors found that dead-reckoning outperformed their history-based protocol by 25% when

considering average error. However, history-based inputs can be sent out 1.75 times more than dead-

reckoning/DIS updates and still reduce bandwidth. When considering this increased update rate, the

2-10

history-based approach outperforms dead-reckoning. A more accurate dead-reckoning approach could

improve the accuracy and realism of all DIS simulations, including the VC.

2.3.2. High Level Architecture. Stark, Weatherly, and Wilson provide an overview of a new form of

architecture currently under development for distributed simulations, the High Level Architecture (HLA)

[STAR96]. HLA is to replace the Distributed Interactive Simulation (DIS) standard. While DIS

architectures communicate with Protocol Data Units (packets of data broadcast over the network), HLA

simulations communicate to the simulation environment through a common software module. The HLA

Runtime Infrastructure (RTI) is the common software module and it provides a set of common services.

The services consist of Federation Management, Time Management, Declaration Management, Ownership

Management,and Object Management. Instead of broadcasting data like DIS, HLA sets up federations in

which producers and receivers of simulation data are registered for a particular group of entities, known as a

federation. These federations are groups of distributed simulations that wish to conduct an exercise. An

HLA simulation communicates to the RTI through the RTI Application Programmer's Interface (API). In

order for a simulator to communicate within HLA, it must compile the API into its software and use the RTI

services to communicate [STAR96]. The HLA architecture eliminates some commonly noted deficiencies

of DIS, such as excessive PDU sizes, inflexible PDU formats, and a broadcast only architecture [MACE94].

This is of particular interest to the VC because it must move from the DIS standard to the HLA standard.

Additionally, the flexibility of HLA in data exchange could open the VC to many other uses. [STAR96]

2.4. Software Architectures

Another component of this research involves software architectures that tie together the areas of

distributed simulations, virtual environments, and flight simulations. While SIMNET, DIS, and HLA are

concerned with information between simulators, a software architecture is concerned with how software

components communicate in a single application. Two basic approaches stated by Amselem for

communication infrastructures, a peer-to-peer configuration and a centralized configuration, shown in

Figure 2-4. A star configuration allows peer-to-peer communication among all of the software components

in the system, increasing the software's complexity. A centralized configuration allows communication via

2-11

a centralized component that stores information that other components may need [AMSE95]. Most virtual

environment designers employ one of these configurations when developing an application. The object-

oriented development techniques encourage encapsulation of data and will support either approach.

However, a centralized configuration is more in line with the object-oriented methodologies of abstraction

and encapsulation [RUMB91].

Peer to Peer Centralized

Communication Communication

Figure 2-4. Communication Approaches.

2.4.1. Peer-to-Peer Communication. The ART Graphics Laboratory currently has two software

architectures in place. The first one is ObjectSim an architecture that allows virtual reality developers to

construct distributed simulations quickly [SNYD93]. The ObjectSim architecture is very tightly coupled to

Silicon Graphics' Performer package and allows efficient multiprocessor rendering [STYT95]. ObjectSim

provides a set of classes that serve as base classes for creating a simulation. The classes support such

concepts as multiple players (both DIS and non-DIS), multiple viewpoints, terrain, and input devices

[SNYD93]. However, in some cases the library does not provide a class to support a specific requirement

or abstraction. The developer modifies one of ObjectSim's abstract classes to fit the requirement. The

ObjectSim architecture also makes heavy use of peer-to-peer communication, although much of it is hidden

from the user, through the use of tightly coupled classes. ObjectSim is a powerful tool that will allow an

individual to quickly develop a distributed, virtual environment application.

2.4.2. Centralized Communication. A second approach, being utilized in the ART Graphics Laboratory

is the Common Object DataBase (CODB) architecture. Stytz proposes a centralized software architecture

2-12

using a database to store information [STYT97]. The CODB uses an object-oriented design to allow a

software developer to easily create a centralized database for storing any type of simulation data. The

database employs a double-buffering scheme that allows simulation components to read and write

simultaneously. Additionally, the architecture uses shared memory to store the data, that provides an

efficient data access scheme for multiple process applications. Because the system utilizes shared memory

and double-buffering, it also allows processes running at different rates to communicate without excessive

blocking. In this architecture, the developer creates simulation components along with the database

structure that they will update. This allows developers to abstract away from class access methods and use

a common access method to read any of the shared simulation data. Any class can access the data placed in

the database by any other class. The CODB accomplishes this by providing certain access methods, see

Rumbaugh diagram in Figure 2-5. Currently, simulation components / classes have been created that

support several input devices, a simple Performer renderer, several aircraft models, a DIS interface, and a

generic entity generator for testing purposes. The CODB architecture's primary concern is with

communication of data within an architecture and does not contain a comprehensive set of simulation

creation functions. A sample simulation developed for testing included several basic simulation classes that

would be common to many simulations. As more CODB development is accomplished, more modules will

be available for use, and simulations can be developed more quickly. In conclusion, the CODB architecture

does not support all of ObjectSim's features; however, it does provide increased flexibility in creating

distributed, virtual environment applications [STYT97].

2-13

DoubleBuffer<T> CODBStatieStuff

read-ptr : *struct buffer-struct
write-ptr: {
WriteAccess :ulock-t type..of-structure :StructureType
ReadAccess :ulock-t ptrj-o-buffer: void* =NULL
ReadCtAccess : ulock-t size-ofT : mt = 0

DoubleBuffer(StmuctureType) MAX_-CODB_-BUFFERS : mt = 50
BeginRead(StructureType) :void* list-of -buffers :
EndRead(StructureType) buffer-struct[MAX-CODBBUFFERS]
BeginReadWrite(StructureType) : void* _________________

EndReadWrite(StructureType) operator new (sizejt) : void*
BeginWrite(StructureType) :void* operator delete (void*)
EndWrite(StructureType)

CommronObjectDB<T>

CODB : CODBStaticStuff

CommonObjectDB(StructureType)
operator new (sizej) : void*
operator delete (void*)
WniializeCODB()
Registered(StructureType) : mt
BeginRead(StructureType) :void*
EndRead(StructureType)
BeginReadWrite(StructureType) : void*
EndReadWrite(StructureType)
BeginWrite(StructureType) : void*
EndWrite(StructureType)

Individual Application Individual Application Individual Application

MyCODB : CODB~cmy-struct>(MY) MyCODB : CODB<mystruct.(MY) MyCODB : CODB<rny-struct>(MY)

Stores the structure my-struct in the Stores the structure my-struct in the Stores the structure my-stmuct in the
CODB under the name MY. The CODB under the name MY. The CODB under the name MY. The
application can then access any application can then access any application can then access any
of the structures being stored in the of the structures being stored in the of the structures being stored in the
CODB by calling access methods in CODB by calling access methods in CODB by calling access methods in
CommonObjectDB. ComnionObjectDB. CommonObjectDB.

Figure 2-5. CODB Rumbaugh Diagram

2-14

2.4.3. Mixed Model Communication. The Distributed Interactive Virtual Environments (DIVE) is a

well-known, long-term effort primarily concerned with ways that distributed virtual realities communicate

and interact [HAGS96]. DIVE is different from most architectures in that it uses both peer-to-peer

communication and a centralized database. DIVE uses a relatively simple replicated database to store

information about all the components in the world. Conceptually, it is called a shared database; however in

the distributed environment it is really several copies of a single database. The DIVE distributes the

database from peer-to-peer [CARL93]. This database provides information about all objects in the world.

For instance, if a person in the virtual reality turns around, they update their database and then send out this

information to a server that sends it to the rest of the systems on the network [HAGS96]. Mutually

exclusive locks insure that only a single process is accessing data on a local database or updating an object

in all the distributed databases in the environment [CARL93]. The concept employed by DIVE in network

communication could be employed in an individual software application by creating a data structure for

each software component to store its information. The information would be then passed to all other

software components. This is similar to the CODB approach; however, all of the simulation components'

shared data remains in a centralized database..

An architecture that does not appear to fit the mold of a centralized / decentralized architecture is

the MR toolkit presented by Shaw [SHAW92]. Shaw proposes a decoupled architecture where all

simulation components act independently of each other. The architecture proposed has four distinct

components for a virtual reality simulation; these include Interaction, Computation, Geometric Model, and

Presentation. The Computation component can execute independently and communicate asynchronously

with the other components, hence the decoupled designation. By having a separate computation component

a model can execute continuously without being tied to the input device's update cycle (interaction

component) or the output device (presentation component). The components all act independently;

however, they all can communicate via a common package. The MR package's component that facilitates

communication between components or processes is the Data Sharing package. The Data Sharing package

is essentially the shared component of the centralized configuration mentioned above. The package

2-15

provides the programmer with a high level interface to communications between processes without having

to worry about sockets and network connections. This level of abstraction allows programmers who are not

expert networkers to create network simulations. MR is a software architecture that is extremely powerful

because it allows a single application to be placed on multiple processes or multiple machines. The Data

Sharing package is a centralized approach that is applicable to the Virtual Cockpit.

2.5. Physical Modeling

Physical modeling is the simulation of physical geometry and physical effects on a computer. This section

will only cover these areas as they pertain to the VC and its operating environment, primarily a Silicon

Graphics Computer System. The VC will utilize modeling tools widely used in the AFIT's Graphics Lab.

The primary tools available for modeling physical geometry are Coryphaeus' Designer's Workbench

(DWB) and MultiGen. As for modeling physical effects, Silicon Graphics has developed a software

development package called Performer. Performer consists of several libraries of software routines for

high-performance graphics applications [MCLE92] [ROHL94]. The virtual reality and computer graphics

communities both widely use Performer for modeling virtual worlds [CARL93] [GIVE 95] [MACE94]

[ROY94] [STYT95].

2.5.1. Physical Geometry. DWB and MultiGen provide extensive capabilities including geometry

design, materials, lighting effects, texture mapping, and multiple levels-of-detail for a single model. For

more information on the functionality of the individual programs see MultiGen Modeler's Guide

[MULT94] and Designer's Workbench 3.1 Reference [MILB95].

2.5.2. Physical Effects. Performer provides several libraries for modeling many of the physical effects

that can change the way a model looks, including: position, orientation, geometrical transformations (scale,

rotate, shear), light, and even fog. Performer reads many common modeling packages' output, including

MultiGen and DWB. The Performer library, libpf, allows users to create a scene that contains physical

geometry. The physical geometry takes the shape of a hierarchy that consists of nodes connected in an

acyclic graph. Each of these nodes contains part of the scene's geometry. Figure 2-6 lists the hierarchy of

Performer's many node types, that include pfGeodes (one or more pfGeoSets), pfBillboard (automatically

2-16

rotates pfGeoSets to face eyepoint), pfLightPoint (visible but non-illuminating points of light), and

pfLightSource (non-visible but illuminating light source) [ROHL94]. Nodes also exist that can transform or

group together other types of nodes. The scene hierarchy generally takes the shape of a tree with all top-

level nodes influencing all nodes below it in the tree. After the developer creates the geometry tree,

Performer will automatically traverse the tree, culling parts of the tree that are not visible and drawing parts

of the tree that are visible. The library also allows the user to easily create multiple processor graphics

applications with all of the memory management and system calls hidden from the user. Performer is an

extremely large and powerful library of functions that gives the developer great freedom in developing real-

time graphics applications. This is a limited description of the hundreds of functions available, for more

information refer to the IRIS Performer Programming Guide [MCLE92].

pfGeode pfText pfflroup pfLightPt pfLightSrc

pfScene pf~artition pfLayer pflOD pfsCs pfSwitch pfSequenc pfMorph

Figure 2-6. Performer Node Hierarchy.

2-17

2.6. Aircraft Simulator Reconfigurability Research

Two approaches have been taken in reconfigurability research: cockpit instrumentation

reconfiguration and reconfigurable software simulation components. In reconfigurable cockpit

instrumentation, software reconfigures the instrumentation based on the type of aircraft being flown. The

Federal Aviation Administration's (FAA) Reconfigurable Cockpit Simulator (RCS) simulates most of the

commercial transport aircraft. The RCS uses a network of five Silicon Graphics computers to model

aircraft aerodynamics, the flight management system, drive cockpit displays, and approximately 90 percent

of the aircraft's other major functions [FAA95]. The FAA uses the RCS for Human Factors evaluations

[FAA95]. Wright Laboratory's Panoramic Cockpit Control and Display System (PCCADS) uses large

screen monitor to display the entire instrument panel to its pilots. Pilots interact with the system's

instrument panel with by touch screen. The PCCADS updates the controls and displays based on the

portion of the screen touched by the pilot. Wright Laboratory uses PCCADS to develop advanced control

and display techniques to increase pilot's situational awareness and safety [WL95]. Both of the cockpits

have a limited out-the-window display capability with a small field-of-view. RCS and PCCADS both allow

pilots to fly several different types of aircraft cockpits from a single control station.

The other part of the reconfigurablity equation is reconfigurable software simulation components.

Flight simulation components are software modules that model a portion of the aircraft's functionality. For

instance, an aircraft's aerodynamic model is based on the same laws of motion regardless of aircraft type.

However, different aircraft types have attributes that affect their performance. A reconfigurable software

model attempts to encapsulate common features among all aircraft into a single location and allow

differences to be parameter driven based on aircraft type. One such model is an aircraft aerodynamic model

developed by Eidetic's for WL/FIGD to represent many different types of threat aircraft. The design of the

Eidetic's model is consistent with other reconfigurable models and will be described as a representative

reconfigurable model. The Eidetic's aerodynamic model encapsulates all the aircraft's laws of motion into

a single model. The type of aircraft to be simulated initializes the model. The aerodynamics model uses the

aircraft type information to read data files that describe that aircraft's performance. The data includes

2-18

tables for coefficients of lift, coefficients of drag, and thrust for different aircraft speeds and altitudes. The

model then uses the equations of motion and aircraft data to model the performance of that particular

aircraft. Other aircraft can be modeled by creating data tables for those aircraft. Reconfigurable software

simulation components provide a valuable tool in developing reconfigurable simulators. The Eidetic's

model discussed above is a library of C functions that will be reused in the VC project for aerodynamic

modeling. Knowledge of other reconfigurability projects is important not only from a reuse standpoint; but,

to also gain insight into the techniques other simulation developers have used to make simulators

reconfigurable.

2.7. Virtual Cockpit

The Virtual Cockpit was originally developed as a low-cost distributed virtual environment for

pilot training. The Virtual Cockpit was developed by using Performer on a Silicon Graphics workstation.

The distributed environment was based on the DIS standard. Switzer started the project in 1992 and

furthered the overall idea of a virtual flight simulator and developed software to interface with the various

input devices that the simulator would employ [SWIT92]. Also in 1992, McCarty developed an out-the-

window display for the Virtual Cockpit [MCCA94]. The VC research project was the basis for two

student's theses in 1993. Gerhard developed low-fidelity weapon systems for the VC, including a weapons

controller [GERH93]. Classes were developed for a cannon, various types of bombs, and missiles.

Erichson developed a sensor suite for the VC. The sensors developed included a radar model, infrared

model, and an Inertial Navigation System (INS). The sensor development also included displays for the

various sensors, although the infrared display utilized Performer functions that prevent it from being useful

in a VR application [ERIC93]. In 1994, Diaz created a photo-realistic F-15cockpit that allowed a pilot to

interact with switches and dials via the mouse [DIAZ94][KEST94]. The VC Project continued in 1995,

with Schneider developing the ability to switch the VC between human control and an artificially intelligent

wingman developed by Edwards [EDWA95] [SCHN95]. The VC continues into 1996 with the ability to

represent different aircraft and rapidly switch between them.

2-19

2.8. Conclusion

A wealth of knowledge exists in each of the fields of study needed to develop a Rapidly-

Reconfigurable Virtual Cockpit (RRVC). Virtual reality applications are becoming more widely used for a

variety of applications from batting practice to training astronauts. Flight simulators are available in a wide

range of fidelities and capabilities. However a narrow field-view for the pilot's out-the-window display

inhibits many of these very expensive flight simulators. Computer modeling and software architectures

provide a framework to develop flight simulators. Computer modeling provides flight simulators with

software models of aircraft dynamics and functionality, in addition to geometrical models to represent an

aircraft's structure or cockpit. A software architecture provides a framework for a software application

regarding both structure of the software components as well as communication between components.

Distributed simulation provides a way to link several flight simulators or other entities and allow them to

interact together. Distributed simulation is similar to a software architecture on a networking level. The

Rapidly-Reconfigurable Cockpit's design utilizes concepts and ideas from each of the disciplines discussed

above to create a reconfigurable aircraft cockpit in a distributed virtual environment.

2-20

3. Requirements and Design

Chapter 3 discusses both the requirements and design needed to complete a Rapidly

Reconfigurable Virtual Cockpit (RRVC). The primary requirement for this effort is reconfigurability of the

VC. Requirements that fall under the reconfigurability requirement include the following:

" a computer architecture that supports reconfigurability,

* software models that support reconfigurability (aeronautical, sensor, weapons),

* a F-16 cockpit, to complement the F-15 cockpit for testing.

However, the RRVC must satisfy the additional requirements that have been ongoing in the Virtual Cockpit

program. These additional requirements include: photo-realistic cockpit displays, distributed simulation

capability, and off-the-shelf computer systems. Table 3-1 contains a more detailed list of the Rapidly

Reconfigurable Virtual Cockpit's requirements. The chapter will contain a more detailed discussion of each

of the above requirements and a list of design alternatives to satisfy the requirements. Finally, the chapter

will contain the design of choice and reason for its selection. Speed, realism, reconfigurability, and

maintainability are the decision criteria for the RRVC design.

Given the requirements in Table 3-1, the design for a Rapidly Reconfigurable VC was developed

and is shown in Figure 3-1. The design utilizes the CODB architecture, reconfigurable software models,

and DIS support. The following paragraphs contain more information on these design choices. The design

consists of a CODB that is at the center of the entire RRVC application and is the primary means for data

transfer between simulation components. The first simulation component is the VCRenderer that is a

super class of the AFIT_CODBRenderer. The VCRenderer is responsible for setting up the Performer

environment, managing the top-level Performer geometry tree, and view manipulation. The 10 classes on

the right side of the figure are responsible for all input into the simulation. Each class handles a different

type of input as denoted by their name. The WorldStateManager, at the bottom of the diagram, is

responsible for all communication with the DIS network. The ConvertToLocal component is responsible

for taking the output from the WorldStateManager (WSMEntityStruct) and converting it into Performer

flat-earth coordinates for use by the other VC components. The Airplane component, that takes up the left

3-1

Table 3-1. Rapidly Reconfigurable Virtual Cockpit Requirements.
Requirement Goal

1. Reconfigurable Software Architecture
1.1. Allow rapid reconfiguration of both aircraft geometry Architecture should allow switching between aircraft in
and simulation components (see REQs 2 and 3) less I second.
1.2. Increase flexibility of simulation framework by Allow all Performer functionality to be available to
eliminating ObjectSim's constraints developers by completely removing ObjectSim from VC
1.3. Provide architecture that will support all needed Utilize container-based approach to storing simulation data
simulation components and be extensible
1.4. Support Multiple Aircraft Configuration supports at least two aircraft
1.4.1. Integrate existing F-15 VC into CODB architecture CODB F-15 VC works identically to 1995 F-15 VC.
1.4.2. Develop a F-16 VC F-16 VC with appropriate aircraft model, sensors and

weapons (REQ 3).
2. Reconfigurable Cockpit Geometry Models
2.1 Allow switching between different aircraft cockpits Switch between F- 15 and F- 16 cockpits in less than one

second
2.2. Create photo-realistic F-16 Instrument Panel Cockpit instruments same size, shape, and coloring of

actual display
2.2.1. Use anti-aliased textures for cockpit text All text in cockpit is anti-aliased to increase realism
2.2.2. Design textures to be reusable in other aircraft All text textures can have any foreground or background

color and any font size
2.2.3. Create realistic dials and needles for instruments Entire instrument panel implemented in DWB to allow

addition of materials and lighting effects
3. Reconfigurable Simulation Components
3.1. Develop reconfigurable aircraft aerodynamic model Aircraft aerodynamic model that can represent many types

of aircraft
3.1.1. Model must be able to represent multiple aircraft Model will represent both the F- 15 and F- 16 aircraft and
based on data alone have data to support additional aircraft
3.1.2. Model must utilize CODB based input and output All input and output from model is CODB based
3.2. Develop reconfigurable radar model A simple CODB-based radar model that represents

multiple aircrafts' field-of-views.
3.2.1. Radar must be able to change field-of-views while Any radar field of view attributes can be changed during
running execution of the application
3.1.2. Model must utilize CODB based input and output All input and output from model is CODB based
3.3. Develop reconfigurable weapons controller Weapons controller will support all current weapons and

multiple aircraft
3.3.1. Modify existing weapons controller to support A single weapons controller that will support multiple
multiple aircraft aircraft
3.3.2. Provide CODB container for weapons status data Weapon status information will be available to all

components in CODB
3.3.3. Create new bomb that will be guided to target by a Utilize existing bomb model to create an additional bomb
Virtual GPS receiver type that will use GPS for guidance and hit target

4. Replace ObjectSim Functionality
4.1. Replace origin-centered viewpoint algorithm Overcome Performer viewpoint resolution problem
4.2. Structure Performer tree to support weapons model Create same top-level tree structure as that in 1995
and viewpoint algorithm ObjectSim VC
5. Improved cockpit interface
5.1. Allow selection of three dimensional panels and Point and click interface for any type of geometry in a
instruments single easy to use class
5.2. Eliminate need for maintaining an active panel for Any button can be selected at any time.
button selection.
5.3. Improve interface with switches and dials Dials and switches move left / right and slow / fast as

desired.
6. Distributed Simulation Interface
6.1. Send and receive entity state information for aircraft Communicate Entity State PDU information with DIS

using CODB
6.2. Broadcast weapon state information on network Communicate Fire, Entity State, and Detonate PDUs using

CODB.
6.3. Display all network entities to pilot Network entities appear correctly in Performer scene

3-2

side of the figure, is responsible for simulating the entire aircraft. The airplane is a framework for the

following models: aerodynamics, weapons, sensors, and instruments. Most of the components in the figure

use the CODB for both input and output. Output is of primary importance in this figure to show what

information will be available to other simulation components.

Airplane :]I VCRenderer

CODBAeroModel IO rer t

SoeroM oel

1.MoseStucue

---]Weapons ontroller
k

2. IOFastrak Stutr

Bomb I-U

Misile FI > C B3. Hotas a Stucur

-t CannonI

F15_InstrumentPanel 7 8

LEGEND for CODB Structures

7.d Cockpit Stutr

1. Mouse Structure
2. Fastrak Structure
3. Hotas StructureJF16_InstrumnentPanel 7 4. Keyboard Structure

._5. Local Coordinate Structure

SelectionManager 6. WSM Entity Structure
7. Cockpit Structure
8. MFD Structure
9. Radar Structure
10. Weapons Struetrure

WorldStateManager 11. Aircraft Structure

12. Own State Structure

DIS Network

Figure 3-1. Rumbaugh Diagram of Top-Level VC Design.

Note: Diamonds represent aggregation, where the top-level component is made up of the lower level
components. Triangles represent inheritance, where the top-level component inherits the behavior of the
lower level components. Numbers in circles beside the components represent the primary CODB data
structure updated by this component.

3-3

3.1. Reconfigurable Computer Architecture

The computer architecture must be able to support the development of multiple aircraft cockpits

and allow reconfiguration between them. The architecture must also be able to quickly switch between

configurations with minimum impact to performance and be able to support the wide range of functionality

that can occur between aircraft. The computer architecture's ability to meet the above requirements will be

tested by integrating the current F- 15 VC into the architecture and then developing an F- 16 VC under the

new architecture. Previous VC's utilized ObjectSim, a peer-to-peer architecture. An alternative is the

Common Object DataBase (CODB), which uses a centralized architecture to store information. Each of the

alternatives has advantages and disadvantages to their use.

The first choice, ObjectSim's primary advantage is that the VC's current implementation uses this

architecture. In fact, the current speed and realism are acceptable. ObjectSim also includes a great deal of

functionality built into its libraries, including support for 110 devices and distributed simulation.

Unfortunately, ObjectSim also has many disadvantages, the primary being ease of use. The library has a

considerable learning curve for its many classes and methods. Users must not only understand the

ObjectSim classes and methods available, but users must also have a thorough understanding of Performer

before they can effectively use ObjectSim. ObjectSim classes are very tightly coupled to Performer and to

each other. Tight coupling makes changing the libraries difficult; therefore, adding any needed additional

functionality will also be difficult. For instance, the ObjectSim uses the Modifier class for input devices

and its purpose is to manipulate the current view of the simulation. If a user wishes to use an input device

for a purpose other then manipulating the simulation view they must override certain methods in the class.

In addition, ObjectSim provides no support for handling data inside the multiprocessing environment that

Performer furnishes to the user. Users expect this because ObjectSim is primarily a simulation toolkit and

not data-handling or multi-processing architecture.

The other primary choice, the Common Object DataBase (CODB), is primarily a data-handling

architecture. The architecture is relatively new and does not include a large number of classes for

simulation development. However, to its advantage, it stresses structured classes to communicate to the

3-4

world through a centralized database. While this does not directly reduce the amount of coupling of a

simulation, it does reduce the amount of information that a class must maintain about other classes. A

central database now contains the data that lead to the coupling. The simulation engineer can abstract away

from the classes and methods that will produce needed data. To obtain the desired data the simulation

engineer must only concern themselves with the container in the database where the information resides. In

addition, the architecture supports double-buffering and multiple processes that are very important in the

Virtual Cockpit where four processors are currently required to maintain an acceptable frame rate

[DIAZ94]. Double-buffering allows separate application components to read and write from the central

database at the same time reducing the waiting time often associated with sharing memory among processes.

Disadvantages to the CODB include a limited number of classes that support or fit into the CODB

framework and CODB access methods must now be built into all classes needing shared data.

A shared approach could also be taken that would utilize both architectures. The CODB could be

used for all shared data access and ObjectSim could be used for setting up network entities. This approach

would seem to have many advantages including a large set of simulation classes and good data handling

facilities. However, all of the ObjectSim-based classes must be modified to support the CODB. The

disadvantages of ObjectSim would also be part of any mixed model approach.

The approach decided upon was to use the Common Object DataBase architecture for the

reconfigurable VC. The primary reasons for this decision are the built in data support for multi-processor

applications and the abstraction away from classes and to containers (CODB structures). The built in data

handling functions use double-buffering and pointers to reduce the time spent waiting of data and the

amount of data passed through the system. The abstraction to containers will assist in the reconfigurability

of the different aircraft. For instance, if the VC is modeling both a C-5 and a F- 15, it may need two

separate software models to simulate each aircraft's navigation system. This may mean two separate

software models / classes must communicate to the rest of the VC while many other components may be

identical (e.g., the radar display on the multi-function display or the radar altimeter instrument). With both

radar models communicating through a common container, the radar altimeter instrument will now only

need to access the radar's database container instead of determining that class method is needed to obtain

3-5

the desired data. In addition, the difficulty in expanding the ObjectSim library was another factor in the

choice of the CODB architecture. Expansion difficulties could lead to problems if future VC aircraft types

contain characteristics that do not fit into the ObjectSim architecture. For these reasons the Rapidly

Reconfigurable Virtual Cockpit uses the CODB architecture for design and development.

3.2. Reconfigurable Cockpit Geometry

A cockpit existed previously for a F-15; however, a F-16 cockpit was required for reconfigurability

testing. A photo-realistic F-16 instrument panel was developed to fulfill this requirement. An entire F-16

cockpit is not being developed because the thrust of this research is the rapid reconfiguration between

cockpits and not cockpit design. For the instrument panel to be photo-realistic, it must have the same size,

shape, and coloring as an actual F-16 cockpit. To allow instrument panel text to appear like that in an

actual cockpit, the models use texture maps on simple polygons [DIAZ94]. The text texture maps should be

reusable for other aircraft. Reuse of texture maps will save the limited amount of texture memory that is

available (Note: texture memory is a portion of system memory allocated to textures, if the amount

allocated is exceeded the performance of the application is degraded as texture memory must be swapped

out when a new (unloaded) texture comes into view). To increase realism, all dials and needles were

developed in DWB to allow effects not easily achievable with Silicon Graphics' Graphics Library (GL)

calls. Finally, the application must be able to switch between virtual cockpits quickly. Fortunately,

Performer contains a construct that allows the switching to take place very quickly.

An immediate design issue in the development of the F- 16 models was how textures would be

created and used to create photo-realistic displays. Diaz had shown that texture maps of the words on the

instrument panel could provide anti-aliased and photo-realistic cockpit instruments [DIAZ94]. However,

the textures that were developed for the F-15 VC are not usable for the F-16 VC because of both content

and coloring. Diaz had created the textures by using a paint program to place white text on a background

the same color as the F- 15 instrument panel. One choice for texture development was to develop a whole

new set of textures for the VC using the same method as Diaz had. The other choice was to develop

textures that are suitable for the VC and that other aircraft cockpits can use. The requirement called for

3-6

reusable texture that can be employed on many different cockpits. The textures must support any

foreground or background color to allow them to support reuse. The textures are created by using a white

text color that when placed on a colored polygon will allow the text to take on the color of the texture-

mapped polygon. The non-text portion of the texture will be totally transparent; allowing it to be the color

of the background polygon (the polygon behind the texture-mapped one). By using the correct coloring

scheme and utilizing the alpha component of textures, text-based textures are created that can be used in

many different Virtual Cockpits.

Another design point in the development of the F-16 instrument panel was the degree to which the

displays would be realistic. In the F-15 VC, all of the components of the cockpit that were being updated

by the aircraft model were drawn utilizing Silicon Graphics' Graphics Library (GL) calls. Using GL

allowed the drawing of needles and numbers where needed in the cockpit. However, the numbers were a

vector font and were not anti-aliased, which decreased the realism associated with anti-aliased fonts. In

addition, the GL needles did not have the same materials as the other components of the cockpit and

therefore were not affected by changes in lighting or shadows. Dials were also implemented using a GL

vector font; numbers on the dials were updated based on the instrument's current setting. However, the

dials did not spin, which prevented the pilot from noticing the motion or the rate at which the value was

changing unless they were staring directly at the values as they changed. Therefore, spinning dials were

implemented in DWB to provide a realism not easily be duplicated using the available GL calls. Finally,

the cockpit utilizes many DWB models to increase the realism of the F- 16 VC.

3.3. Reconfigurable Simulation Components

The Virtual Cockpit utilized reconfigurable simulation components to aid in the development of

different Virtual Cockpits. Reconfigurable simulation components are models that can represent different

configurations or types of the same model. For instance, a single reconfigurable aircraft model can

represent several different aircraft. The type of component a reconfigurable component represents is

usually set in one of two ways, at creation or by changing the parameters used to drive the model.

Reconfigurable models developed for this research, include an aerodynamics model, a weapons controller,

3-7

and a radar. Two separate instrument panel components represent the F-15 and F-16 cockpits, because of

the large differences in appearance and functionality between the two cockpits. The current instrument

panel in use depends upon the RRVC's current aircraft type. The Airplane class contains and updates all

models.

The use of a "C" language aircraft model from Wright Laboratory's Flight Simulation Facility

(WL/FIGD) that was highly parameterized greatly helped the development of a reconfigurable aircraft

model. The model utilizes data files to determine the type of aircraft it will represent in a simulation

exercise. The original model initializes as a single type of aircraft and is flown as that aircraft for an entire

simulation. To use the model to rapidly reconfigure from one type of aircraft to another the model must

under go the following transformations.

1. Change model to an object-oriented C++ model to support the declaration of multiple aircraft.
2. Change the model to allow setting the aircraft type at creation time.
3. Change the model to utilize the Graphics Laboratory's combination stick, throttle, and rudder input

device.
4. Change the model to allow user to reset the position of the aircraft to any orientation or position.
5. Change input and output for the model to support the CODB architecture.
6. Change the model to include support for the Performer coordinate system.

After making these changes, multiple aircraft types can be created using this single model. Expansion of the

ResetPosition function to allow all orientation information will allow an aircraft model to start out in

another aircraft type's orientation and position. Other reconfigurable models developed include a radar and

weapons controller.

A simple radar model design provides a basic radar functionality. The VC's current radar uses a

simple viewing frustum and has two modes, one for air entities and one for ground entities. If an entity is in

the frustum then it is seen by the "radar" and its coordinates are transformed by scaling, rotating, and

translating them to the correct position on the radar display. Disadvantages of the current design include

hard-coded values for radar range, radar field-of-view, and not maintaining azimuth and elevation

information for the radar's tracks (Note: typical radars return track azimuth, elevation, and range). This a

disadvantage because other aircraft components such as displays need azimuth and range information.

Hard-coding the values also prevents the application from being able to change the values to alter the

radar's search volume, that is a typical pilot operation in the F-15 and F-16. A navigation class contains

3-8

and hides the radar model. This not only makes the radar model difficult to find but also difficult to change.

The new design will create a separate radar class that matches the design in Figure 3-2. The design

encapsulates the radar in its own class and provides methods for setting radar FOV and range. The radar

model uses a frustum in the same way as the current model. In addition, the F-16 VC's radar display will

use an azimuth versus range display, as opposed to the current situational display employed in the F-15 VC.

Figure 3-2 also shows the CODB container that stores radar output. The design provides a reasonable radar

interface and functionality until a more realistic model can be developed.

CODB LocalCoordStruct (partial) CODB Aircraft Struct
//Location in Performer coordinates //Location in Performer coordinates

double x; I meters double x; I/ meters

double y; II meters double y; H/ meters

double z; I meters double z; I meters

/Orientation in Performer coordinates //Orientation in Performer coordinates

float psi; H radians float psi; I radians

float phi; //radians float phi; // radians

float theta; / radians float theta; /radians

CODB Input CD nu

Simple Radar Class CODB RadarStruct
simpleradaro; struct radarentitystruct
-simpleradaro;
simpleradar(float min relativeazimuth, float xy,z, h,p,r,az,el.range;

float max.relative_azimuth, containerstate trackstate;
float min_relative-elevation,
float max relativeelevation,
float max.rangemiles); CODB Output struct radarcontainer

void getazimuth(float& minazimuth,
float& maxazimuth); radar.entity struct
void setazimuth(float min_azimuth, radar-entity[MAX_ ENTIES];

float maxazimuth); int number_active_tracks;
void getelevation(float& minelevation, float minrelativeazimuth; /degrees
float& maxelevation); float maxjrelative azimuth; //degrees
void setelevation(float mrnelevation, float min_relativeelevation; //degrees
float maxelevation); float maxrelativeelevation; I/degrees
void get-range(float& range);
void set_range(float range);
void updateo;

Figure 3-2. Radar Class with CODB Input and Output Structures

The weapons controller class existed previously in the F-15 VC; however, due to some hard-coded

values, it cannot be used for separate aircraft. The model was changed to allow multiple weapon controllers

to be created, each with separate weapon loads. In addition, maximum weapon type limits were increased

3-9

to allow the weapons controller to be used for the F-16 aircraft. The model will be changed to interface

with the new CODB interface and will output weapons information to the CODB WeaponsStruct container.

A final change to the weapons controller is to allow it to interface to the new DIS manager for broadcasting

weapons state information across the network. The Distributed Simulation Interface section of this chapter

discusses these changes in more detail.

The Weapon Controller's bomb class is already a functional class that enables it to simulate

several different types of bombs. A previous thesis student developed the class and it provides several

types of simple bomb models, including both guided and dumb bombs [GERH93]. To create a GPS-guided

bomb (Requirement 3.3) the experimental bomb type, WXG will be changed to represent a GPS-guided

bomb. The bomb will use a Virtual GPS Receiver developed by Captain Gary Williams to determine its

GPS Position and use that position for guidance [WILL96]. The bomb model keeps track of both its true

position and its GPS position. The bomb updates its GPS position by calling the Virtual GPS Receiver's

method get-gps-pos and passing it the bomb's true position and the current simulation time. Only a small

portion of the bomb model changes when incorporating the modifications stated above.

The F-15 and F-16 VC's will have two separate instrument panel components because of the great

difference in functionality between the two cockpits. The instrument panel components are responsible for

updating the displays and controls of the cockpit. Two approaches could have been taken in the

development of an instrument panel component. First, a single reconfigurable software class for all the

different aircraft types that can be represented by the RRVC. The second approach is to use a separate

model for each aircraft type. The second approach was chosen for several reasons, primarily because of the

tight coupling between this class and the actual geometry files used to model the instruments. This class is

responsible for manipulating the Performer trees that make up the instrument panel based on the current

state of the aircraft. Because each individual aircraft type's cockpit is very different from another, the

decision was made to have separate instrument panel classes for each aircraft type. This will encapsulate

the aircraft type's differences in their own individual classes and eliminate the complexity associated with a

single mammoth instrument class for all aircraft types. Keeping the classes separate also allows most of the

current F-15 VC instrument panel code to remain unchanged, except for CODB additions. The F-16 VC

3-10

can then use the new Selection Manager discussed in section 3.5, without being tied to the framework of the

current architecture.

3.4. Replacing ObiectSim Functionality

The primary replacement of ObjectSim functionality involves the updating of simulation entities

and the integration of terrain files into simulation. The design approach was to utilize a Performer tree

similar to the 1995 VC, that maintains the VC, the DIS Players, and the Terrain all as separate Performer

trees, see Figure 3-3. The VCRenderer class encapsulates all top-level Performer tree activity. A second

ObjectSim replacement also was placed in the VCRenderer class and involves moving the terrain and DIS

players relative to the VC. The code from the ObjectSim pfmr_renderer class is used to duplicate this

functionality. Movement of the world around the VC is necessary because of the way Performer updates the

viewpoint in the simulation. Performer uses a pfVec3 to update the viewpoint that is an array of three floats

for x, y, and z. As these numbers increase in size, floating points lose resolution and the viewpoint begins

jumping around, resulting in movement that does not appear smooth to the user. The VCRenderer uses an

algorithm from ObjectSim's View class to update the view, shown below.

-- Algorithm to move the viewpoint of an aircraft to the origin and to move other entities
-- and terrain relative to the aircraft. The algorithm also considers an offset.
-- Set Position of OriginCoord to origin (x = y = z = 0.0)

PFSETVEC3(OriginCoord.xyz, 0.0f, 0.0f, 0.0f);
-- Set Orientation of OriginCoord to Aircraft's Orientation

PFCOPYVEC3(OriginCoord.hpr, Aircraft->Coords->hpr);
-- Translate and Rotate Aircraft's Geometry by OriginCoord

pfDCSCoord(MyModel->RotDCS, &OriginCoord);
-- Set OriginCoord to Aircraft's orientation plus any offset

PFADDVEC3(OriginCoord.hpr, aircraft->Coords->hpr, offset->base rot);
-- Set Position of OriginCoord to origin (x = y = z = 0.0)

PFSETVEC3(OriginCoord.xyz, 0.0f, 0.0f, 0.0f);
-- Make a coordinate transformation matrix from OriginCoord

pfMakeCoordMat(viewmat, &OriginCoord);
--Transform the Offset by coordinate transformation matrix

pfXformPt3(Result, (*attached)->base-offst, viewmat);
-- Set View parameters

pfChanView(chan, Result, OriginCoord.hpr);
--Negate the resulting transform (opposite direction of aircraft)

PFNEGATEVEC3(Result, (*attached)->Coords->xyz);
-- Move the players in the opposite direction as aircraft

pfDCSTrans(playertrans, Result[PFX], Result[PFY], Result[PFZ]);
-- Move the terrain in the opposite direction as aircraft

pfDCSTrans(terraintrans, Result[PFX], Result[PFY], Result[PFZ]);

3-11

Performer
Top-Level

Scene

Performer Performer Performer
DCS DCS DCS

Performner
Aircraft cCS Terrain

Geometry (#entities)

DIS
Players

(# entities)

Figure 3-3. 1995 VC and ObjectSim Performer Tree

3.5. Rep~lacing AFIT Pod Interface

The requirement for natural interaction with the aircraft cockpit has not changed from the inception

of the VC research. The current design and implementation refers to the AFIT Pod. This design utilizes a

series of classes that implement panels, sub-panels, buttons, and a mouse used for selection [KEST94]. For

an application to interact with a single button using the AFIT Pod, the developer must create a panel and

place a sub-panel on that panel and place a button on that sub-panel and then register the panel with a

mouse previously created. To select a button, the application creates a line segment based on the position

of the mouse and the position of the panel. The application passes the line segment to each of the classes

above to test for intersection of the button and the line segment. This process expands if the user wishes to

define their own button shape, such as a switch or dial. A further limitation is that a a panel may only be on

3-12

a single plane. For a system to have multiple control surfaces they must create multiple panels.

Unfortunately, a user cannot select a button on any panel; but, can only select a button on the current active

panel. Therefore, the user must switch between panels in order to select a button on an individual panel.

As can be seen, this process is very complicated. The developer must create a large framework for a single

button and the amount of automation gained from utilizing this framework is relatively small. The AFIT-

Pod framework also limits the user to two-dimensional selection that is not acceptable in a three-

dimensional virtual environment, such as the RRVC. The two-dimensionality of the AFIT Pod prevents the

user from selecting on other surfaces unless the developer creates an additional AFIT Pod Panel. The user

of the system must then switch between panels before they can make a selection, meaning only certain

things can be selected at certain times. While the ART Pod provides some basic functionality, its

disadvantages greatly outweigh its advantages to the RRVC research.

A new design developed in conjunction with Captain Brian Garcia will greatly simplify the

approach and replace all the above classes with a single class [GARC96]. The new Selection Manager class

will make use of optimized picking functions built into Performer and eliminate the complexity currently

associated with the process. A Performer function is available that performs an intersection through the

visible Performer geometry based on the position of the mouse. If any Performer geometry was

"intersected" by the mouse then the function returns the path through the Performer tree leading to that

geometry. By naming the nodes to be selected (such as switches and dials) with a certain prefix and integer,

the new Selection Manager notifies the application when a user picks any of the selectable geometry. By

using geometry for selection, the new Selection Manager can pick any type of shape of object anywhere in

the scene. The capabilities of the new Selection Manager greatly ease the development process and create

additional methods for cockpit interaction (discussed in detail in Chapter 4).

3.6. Distributed Simulation Interface

The new Distributed Simulation interface will continue to use the Distributed Interactive

Simulation (DIS) protocol. Originally, the VC was to have transitioned to HLA during this research period;

however, the lack of a completed HLA architecture prevented this from happening. The VC will use the

3-13

newest version of the World State Manger for its DIS interface, World State Manager 3.0. The World State

Manager was created by Sheasby and provides an application with an interface to the DIS

environment[SHEA92]. Sheasby has continued to update the World State Manager libraries and they now

support the CODB architecture. The VC will interface to the DIS architecture through the supplied CODB

DIS structures. The structures include a structure to broadcast local entity state information

(OwnStateStruct) and a structure to store network entity state information (WSMEntityStruct). An

additional component of this interface is a function that converts DIS entities' positional information from

earth-centered coordinates to a flat world representation used by the VC. The function will store a structure

identical to the WSMEntityStruct in the CODB and refer to it as the LocalCoordStruct. The creation of an

additional storage location will allow any component of the simulation to obtain earth centered coordinates

and flat-earth coordinates for any entity in the simulation. Currently the Airplane, VCRenderer,

InstrumentPanel, Radar, WeaponsController, Bomb, Missile, and Cannon classes all require flat earth

coordinates. The design will eliminate the need for multiple simulation components to calculate their own

flat-earth positions from the DIS coordinates.

3.7. Conclusion

The design of the RRVC meets all of the requirements discussed in Table 3-1. The design focuses

on the CODB and simulation components that communicate between each other using the CODB. The

design removes ObjectSim components and replaces the architecture with a container-based approach. The

computer architecture incorporates the functionality of the F- 15 VC and provides interfaces for the F- 16

VC. The architecture supports not only reconfigurable models; but, also aircraft unique models for

improved realism. The F- 16 VC's cockpit design focuses on photo-realism and on creating reusable

components. Reconfigurable simulation components are used to allow multiple aircraft types to be

simulated and eases future modeling efforts. The RRVC removes the AFIT Pod interface and replaces it

with a Selection Manager that is easier to use and implement. Finally, the World State Manager provides

DIS support for the VC using the CODB for data transfer. This design allows creation of a reconfigurable

3-14

cockpit that allows a pilot to switch between a F-15 and F-16 and take part in a distributed interactive

simulation.

3-15

4. Implementation

This chapter discusses the implementation of the requirements and design discussed in Chapter 3.

An incremental build approach is taken in the implementation of the design, with each design component of

the VC representing a separate phase of the development. The design components that make up this

research are the reconfigurable software architecture, reconfigurable cockpit geometry models,

reconfigurable simulation components, replacing ObjectSim functionality, replacing the ART Pod

Interface, and interfacing to DIS. Each design component builds upon a working baseline, with the initial

baseline represented by a CODB Demonstration application. Each of the design components is

implemented independently of each other and builds upon the progress of the previous component's

implementation. This approach allows incremental testing of the application after each phase of the

implementation. During incremental testing, each new component of the RRVC is tested, as well as its

interaction with all previously implemented components. The only variation from this approach was the

replacement of ObjectSim functionality, which was addressed as needed. The design components were

implemented in the same order as discussed in Chapter 3: reconfigurable software architecture, cockpit

geometry, simulation components, replacement of ObjectSim functionality, replacement of the AFIT Pod

interface, and finally the distributed simulation interface.

4.1. Reconfigurable Software Architecture

The first task in the research project was to move the 1995 VC into the CODB architecture.

Primary concerns in this task are the removal of all ObjectSim architecture components and insuring that no

functionality was lost in the conversion. Instead of removing ObjectSim references one-by-one and

converting them to the CODB, the approach taken was to remove all the VC and rebuild it from the ground

up using the CODB architecture. Breaking down the development into manageable components kept the

process from becoming overwhelming. Each component's structure and functionality could be examined on

its own -- allowing better component-level understanding. The CODB Demonstration application,

developed as an Advanced Computer Graphics Course (CSCE 682) project, was used as a working baseline

4-1

for the Rapidly Reconfigurable VC (RRVC). The CODB demonstration project included a simple

Performer renderer, aircraft model, and 1/0 devices all integrated into the CODB architecture. The CODB

Demonstration application provided both a sample of the CODB architecture and an application that could

be built upon to create the RRVC.

The first step in integrating the 1995 VC into the CODB application involved breaking apart the

VC into components. Originally it was thought that each class could be taken out of the 1995 VC and

turned into a CODB class; however, this was not the case. The design of the 1995 VC involved

components that were made up of several highly coupled classes that communicated via a shared memory

structure. These components were identified as the cockpit, weapons, head-up display (HUD), aircraft

model, and multi-function display (MFD) / inertial navigation system (INS) / radar. The primary shared

memory structures used extensively throughout the VC were a MFD/INS/Radar structure and a Cockpit

structure. The cockpit component of the VC included classes for the aircraft's front panel and side

consoles. These classes were built upon the AFIT Pod classes (panel-type, sub-panel-type, button-type,

button-type2, and mouse) for button selection purposes. Additional Cockpit component classes existed to

keep track of the cockpits current status using the Cockpit structure. The weapons component included a

weapons controller along with classes for a cannon, bombs, and missiles. The weapons component utilizes

part of the MFD/INS/Radar structure to keep track of targeting information. The other components of the

system were three tightly coupled classes (MFD, INS, Cursor) that controlled the radar, kept track of

navigation points, and displayed information on the MFD's. The MFD, INS, and Cursor classes

communicated via a shared memory structure that contained all the information of interest to the classes.

The HUD used information about aircraft position and orientation along with data in the MFD/INS/Radar

structure for targeting information. A class that did not utilize shared memory structures to any great degree

is the aircraftmodel. The aircraft model used only the input of the throttle and stick to control it and used

methods to communicate its status.

Once the 1995 VC was broken down into its components, the cockpit component was chosen as

the first component to integrate into the RRVC. The cockpit component did not utilize any ObjectSim

4-2

classes and therefore was relatively easy to integrate into the CODB Demonstration application. However,

the effort required more than simply compiling the class and ensuring the geometry was in the correct place

in the cockpit. A CODB container was created to replace the shared data structure. The replacement allows

each class of the component to communicate through the CODB. Access calls to the CODB replace all

references to the shared data structure. The cockpit component while fairly complicated was well

encapsulated and provided a good first attempt at transitioning a component into the CODB architecture.

Integrating the cockpit component further highlighted several advantages of the CODB

architecture and disadvantages of the ObjectSim design. The primary advantage of the CODB is the

double-buffering it provides. Double-buffering allows two processes to read and write to the same data

structure at the same time and eliminated the need for different processes to share one set of data. In the

1995 VC, the process responsible for drawing the geometry was sharing the data with the process

responsible for updating the data. Semaphores were used to protect the data and could cause the processes

to wait on each other, eliminating some of the advantages associated with the multi-processing capabilities

built into Performer. Another advantage of the CODB is that it maintains shared state information in shared

memory and allows access by any process. This eliminates the need to keep two copies of the data, one in

local memory and one in shared memory, as was the case with the 1995 VC. A disadvantage of the 1995

VC design discovered during the conversion to CODB was the how complicated the current ART Pod

interface made the F-15 VC application. The F-16 component of the RRVC will utilize a new selection

interface that will be discussed later in this chapter.

The second group of components to be integrated into the VC were the HUD component and the

MFD/INS/Radar component of the F- 15 VC. The HUD was changed to read the aircraft state from the

CODB. The HUD utilized the MFD/INS/Radar shared memory structure for targeting information. This

structure was left in place to ease integration of the HUD and replaced with a CODB structure after the

MFD/INS/Radar component was integrated into the CODB. The next step was to integrate the MFD, INS,

and Cursor classes into the CODB. The process was straight forward, in that all shared memory accesses

were replaced with CODB accesses. However, this component was created in the same manner as the

4-3

cockpit component, all data that had to be accessed in separate processes was stored in both local and

shared memory. The classes were simplified by eliminating all variables / data that were duplicated.

Eliminating the duplicated variables made the class easier to understand and eliminated the added effort

required to ensure both sets of variables agreed with each other.

The final component integrated into the simulation was the weapon component. The weapon

models were eliminated from the VC in 1994 and had not been used since. Integration of this component

not only involved conversion to CODB, but also compliance with the current VC code. The CODB

integration was straight forward because of limited shared memory use and therefore only a few CODB

accesses. However, all the weapons software had to be inspected for data validity, ensuring that all data

being used bythe weapons was available and valid. For testing purposes, the weapons were exercised and

examined for correct execution. The models work as they were designed to; however, the models are based

on simplifying assumptions that sometimes results in unrealistic behaviors. Additional changes to the

weapons models were needed to make the weapons controller support multiple aircraft, that is covered in

the Reconfigurable Software Models section of this chapter. After all components were moved to tw

CODB architecture an Airplane class was created to provide a framework for all of the components, both

individual aircraft components and reconfigurable components. Figure 4-1 provides a view of the types of

instance variables and methods included in the Airplane class. The Figure 4-1 contains all instance

variables for both the F-15 and F-16 aircraft. The beginning of the columns contain cockpit variables and

geometry selection classes. The middle portion of the columns contain components that are shared:

RoundEarthUtils (conversion from DIS coordinates to flat earth coordinates), DISManager (responsible

for all network interfaces), VCRenderer (maintains all geometry variables for simulation), and

VCSwitchNode (the Performer node used to switch between F-15 and F-16 geometries). The bottom

portion of the left column contains the methods which are used to operate the class -- their functionality is

described in Table 4-1.

4-4

Table 4-1. Airplane Class Methods and Functionality.
Airplane Constructor - creates instance of class
Initialize Initializes all instance variables in class
Update Performs one frame of simulation
UpdateDIS Updates Aircraft's DIS Position through World State Manager
Create PerformerSubtree Reads in aircraft's geometry files and creates a Performer tree
Get Performer Root Returns top node of Airplane subtree
Get DIS Root Returns the portion of the tree used for DIS components
ResetPosition Resets position of aircraft to desired position
Get Performer Position Returns Performer Position and Orientation
Get Performer Velocity Returns Performer Velocities for Position and Orientation
ReloadWeapons Convenience function to reload weapons while running
Reset AircraftType Change type of aircraft being flown
Draw Portion of class which must be updated in draw thread

The Airplane is intended to be a multi-processing Performer component and is created with an

Update method, to be called in application process, and a Draw method, to be called in draw process. The

performance of the default cull provided by Performer eliminates the need for a custom cull method. As

can be seen in Figure 4-1 the components are split between F-15 components and F-16 components. For

reconfigurable components such as the aircraft model only a single type of class reference is needed and is

called regardless of the type of aircraft (F-15 or F-16) being flown (Note: two CODBAeroModels are

created, one for F-15 and one for F-16, that is then accessed via the variable vcaero_model). However, for

non-reconfigurable classes such as the instrument panel, a case statement provides a way of only calling the

class associated with the current type of VC aircraft being flown. Non-reconfigurable models allow aircraft

specific models to be integrated into the architecture without trying to make them be parameterized for

every type of aircraft. The most important method in the RRVC is the ResetAircraftType that

reconfigures the entire class for another aircraft. ResetAircraftType takes the type of aircraft as an

argument and then changes the VC's primary state variable (CurrentVC_Type). Changing

CurrentVCType causes the class to change all the simulation models and switch the geometry to the

correct aircraft/cockpit combination. CurrentVCType is used by each of the class methods to determine

what aircraft the model is representing and, therefore, which classes should be updated.

4-5

//Types
enum vc-type {F15_VC, FI6_VCI
//F-15 Components //F- 16 Components
LeftConsole FI 6_Instruments
RightConsole Selection-Manager
Instruments
LeftPanel
Right-Panel
InstrumentPanel
Mouse
MFD
INS Simple-Radar
HUD F16 HUD
F15_Weapons F16_Weapons
F15 Root Node F16 Root Node
F15 AeroModel F16 AeroModel
//Shared Components //Shared Components
RoundEarthUtils RoundEarthUtils
DISManager DISManager
VCRenderer VCRenderer
VC SwitchNode VCSwitch Node
//Methods
Airplane(RoundEarthUtils*, DISMgr*);
void Initializeo;
void Updateo;
void UpdateDISO;
pfGroup* CreatePerformerSubtreeo;
pfGroup* GetPerformerRooto;
pfGroup* GetDISRootO;
void ResetPosition(x,y,z,mach,heading);
pfCoord GetPerformerPositiono;
pfCoord GeLPerformerVelocityo;
void ReloadWeaponso;
void ReseLAircraft.Type(vc_type);
static int Draw(pfTraverser*,void*);

Figure 4-1. RRVC Airplane Class.

4.2. Reconfigurable Cockpit Geometry Models

This section covers the development of the geometry models that were developed to implement the

F-16 instrument panel. The F-16 front-instrument panel has to be photo-realistic and use in a small enough

number of polygons to be rendered in real-time in the application. Textures are used to reduce the number

of polygons needed to create realistic models. Therefore, texture creation proved to be an important part of

the F- 16 cockpit development, including finding an application to create them. To cover both of the two

primary cockpit design issues, creation of textures and photo-realism, the development of a single F- 16

instrument, the altimeter, will be discussed in detail. Development of all other displays is simply an

extension of the lessons learned during the implementation of the altimeter.

4-6

The first step in developing a cockpit, prior to developing instrument models or textures, is finding

a realistic copy of a cockpit to model. This paragraph provides a background of how cockpit dimensions

and layout were obtained for the F-16 and may be useful for others going through a similar undertaking. A

useful source of information was Randy Olsen from the Aeronautical Systems Center's Unit Training

Device Program Branch (ASC/YWPD), who provided engineering drawings of an F-16 WTT simulator

cockpit. These engineering drawings provided dimensions of both the F-16's front instrument panel and the

cockpit's shell. A Critical Design Review document for the F-16 Unit Training Device program, in the

same branch, provided drawings of all the instruments in the cockpit along with switch and dial positions to

0.001 inches. Combining these two resources allowed accurate positioning of dials and switches in the

cockpit. The next step was to position the instruments in the correct position on the instrument panel, this

information was obtained by using drawing and diagrams provided in the F-16 Flight Manual. F-16 Flight

Manuals are a tightly guarded resource, not from a security standpoint, because of scarcity. The F- 16

System Program Office (SPO) has all its unclassified manuals on CD-ROM and provided limited access to

the CD-ROM for this research. Finally, an actual F- 16 cockpit, from a stressed airframe, was discovered in

the Wright Laboratory Simulation Branch (WL/FIGD) that provided another way to measure and compare

the DWB models for accuracy. These sources provided invaluable information that was not available on

previous VC efforts; but, is necessary for realistic cockpit modeling and pilot training. If a pilot is bothered

by an inaccuracy in cockpit modeling then their concentration will stray from the training to be

accomplished and may instead focus on inadequacies in the cockpit model.

The F-16 cockpit utilizes textures for a majority of the text displayed in the cockpit (see

Figure 4-2). Diaz used textures in the 1994 VC to provide realistic looking text without the cost associated

with using GL or Performer to actually create letters using geometry, see Figure 4-3 [DIAZ94]. The F- 16

uses the same approach, but uses a texture's alpha component to create a texture that can be used with

different foreground and background color combinations. The ability to vary foreground and background

colors is important for reuse. Because while cockpits often have common text string, they often have the

text in different colors or shades of colors. Creation of textures involved experimentation of several

4-7

different tools before settling on GIMP (General Image Manipulation Program). The tool had to be able to

create textures with text in differing sizes and fonts, save in DWB texture format (RGB or RGBA), and be

able to set a texture's alpha channel. DWB allows creation and manipulation of textures, but does not

support entering text in textures. Super Paint on the Macintosh allows the creation of text-based images;

but does not allow a file to be saved in the proper format and involves moving the texture between different

platforms. Image Magic, a free UNIX program, provides text insertion and a multitude of file formats; but,

no easy method to set an alpha channel. GIMP, a free UNIX program, provides all the needed abilities and

was chosen as the tool to create textures even though the beta release occasionally crashes.

Once the right tool was chosen the process of creating the textures began. Multiple foreground

colors is achieved by simply choosing in DWB how the texture will be applied, decal or modulate. If a

texture is placed as a decal on a polygon, the texture will maintain its same coloration. However, by

modulating the texture on the polygon the texture colors are blended with the color of the polygon. By

making the F- 16 textures have white letters, the letters could be made any color by simply changing the

textured polygon's color. Allowing multiple background colors is made possible by using the alpha channel

to make everything that was not a letter in the texture completely transparent by setting its alpha component

to 1 (black). Placing a texture on a yellow polygon will cause the text in the texture to become yellow and

the alpha component of the texture would make the rest of the polygon transparent. Placing this polygon on

top of any other colored polygon would make the background color the same as that polygon. The polygon

must be separated by some distance or their coplanarity will result in a shimmering effect in the Performer

simulation. This minimum distance was found to be 0.01 inches at the Virtual Cockpit view distances. The

step-by-step process of creating a texture for the altimeter is shown in the following figures:

Figure 4-2. Placing the numbers for the altimeter into an image.

Figure 4-3. Inverting the image to make letters white (0) and background black (1).

Figure 4-4. Creating a second image that is entirely white (0).

Figure 4-5. Saving the second image as an RGBA file using the first image as the alpha channel.

4-8

,T: '112, :4 0123456 789

!

L' I 1>7 <% 1 !I i 7::i*$"

PF7i 7

adb cuI <F2 i -" 47

adhegaamn

cFaot ine r 4-2 oPacndr TheNuber -oj h lieerIt nIae

copal soli

File Edit Tools llruiliv -. Color

012,3 4 5 6 7 8 9

10

adebe caslon F23 Pixeli:
adobe garamond
AM16

carta.
cavle AntialiAN

charter
copal decorated Foundry adobe -j
copal outline
C opal Sol] d
courLer Weight
curl
dj'b
fulmlata

Slant
haeberii r mj

honesty
St -,,Idth n arrow

Itc avant garlde gothic
itc bookman Spacing
itc zoq)f chanceTy

0 123 4 5 6 7 89

Figure 4-3. Inverting The Image To Make Letters White (0) And Background Black (1).

4-10

Firlm Editht Tol boldef C-

SstwidflP narow

Figure 4 retnaAScodIag ha sEnielnhte()

ar4-11

Fil Edi Tuol B ru si h w D

l/El

Figure 4-5. Saving Second Image As An RGBA File Using The First Image As The Alpha Channel.

Note: The reason all the number textures were created in blocks is because Performer needs a texture's
dimensions to be a power of two. Creating several lines of text allowed more text to be placed in a power-
of-two texture. The textures could then be placed on an identically proportioned polygon in DWB and
individual words / phrases cut out using the polygon cutting tool.

4-12

Figure 4-6. Single Altimeter Dial in DWB.

4-13

Figure 4-7. Entire F-16 Altimeter in DWB.

Once the texture is completed, the rest of the altimeter's geometry can be created. Number dials

are created using the number texture (see Figure 4-6). Creation of individual number dials allow simulation

of individual spinning dials and gives an impression of how fast the aircraft is changing altitude. Spinning

dials could be simulated using GL calls, but would have used a vector font for the dials that is not as

realistic as the texture-mapped dials. To model the performance of the actual altimeter in Performer, each

component that moves independently must be stored in an individual file. The altimeter includes several

independent components: the needle, a number dial (that is duplicated six times), a switch, a

4-14

PNEU/ELECT label, and the background (that does not move), see Figure 4-7. These individual files were

each developed by creating an entire altimeter file and then saving each of the above components in a file

by itself. The background model is then added at the desired location in the Performer simulation with all

of the other components in the same Performer tree, Figure 4-8. Movement of the dials and needle is

accomplished by rotations based on the current speed of the aircraft. Movement of the PNEU/ELECT label

is in response to a user moving the switch (switch movement is covered in a later section of this chapter)

and also involves simple rotations based on switch position. All updates of dials and switches are

accomplished in the Update method of the f 16_instruments class that also contains the code necessary to

load all of the cockpit geometry.

Center
of

Cockpit

Performer
DCS

Altimeter

Atmtr AtmtrAltimeter Altimeter Altimeter
Altimter Switch Number Needmee Background

SwichWords Dials (1-5) Nede Geometry

Figure 4-8. Altimeter Performer Tree

4-15

Each of the instruments in the F- 16 cockpit is created in the same manner as above. The aircraft

model is used to drive all of the displays. However, some displays, such as oil pressure and exhaust

temperature are not a direct output of the aircraft model and had to be derived from throttle position

[ULST96a]. Pictures of all the F-16 VC instruments are provided in Chapter 5.

4.3. Reconfigurable Simulation Components

Reconfigurable software models provide a single point solution for multiple modeling situations.

The primary reconfigurable model utilized here is a reconfigurable aircraft model that can represent any

modern aircraft based on a series of input files. Secondary reconfigurable models included a simple radar

model and the modification of the weapons controller to allow multiple aircraft to use it independently.

The aircraft model that was previously used in the VC did not provide enough fidelity for Virtual

Reality simulation, often visibly shaking or jittering during flight. A reconfigurable aircraft model was

obtained from Wright Laboratory's Flight Simulation Branch (WL/FIGD). WL/FIGD obtained the model

under a contracted simulation effort with Eidetic. The aircraft model is protected from public release; but,

is releasable to any government entities who wishes to use it. The model was made up of several C

language files and allowed the creation of one aircraft that would take on the characteristics of the aircraft

specified in the input files. The model provides no support for Performer, CODB, changing aircraft, or

changing aircraft position. Separate implementation phases were used to change the C model into one that

the RRVC could use for in-flight reconfiguration and are as follows:

* change C language model into C++ to allow multiple aircraft to be created,

* use CODB for input and output and provide Performer support, and

* allow in-flight reconfiguration of aircraft model.

The phases were accomplished in the order above and are discussed in detail in the following paragraphs.

The change from C to C++ was primarily done to allow multiple aircraft models to be created and

not to restructure or redesign the model itself. Therefore the model was simply encapsulated in a C++

wrapper. All C variables were made private instance variables of the class. All C routines were made

4-16

private methods in the AeroModel class. A set of public instance variables and methods were created to

interface with the private low-level aircraft model software. These variables and methods insulate the

developer from the low-level aircraft model and provide an easy to understand interface, Figure 4-9.

Reset and Fly methods are consistent with the underlying C model. Additional methods, developed for C++

included a Constructor, Get and Set routines for all inputs to the aircraft model, and only Get routines for all

outputs of the model. A problem uncovered during use of the new model for multiple aircraft was that

identical throttle values were being used for both instantiations of the aircraft regardless of how they were

set in the methods. This problem points out a critical difference between C and C++, how they treat static

variables. A static variable in a C function is created and initialized once regardless of how many times the

procedure is called. In a C++ class, only one copy of the variable is created for all instantiations of the

class. The CODBAeroModel's error involved the use of a static variable to filter past throttle values and

was being shared among all instantiations of the class. This problem was the result of an oversight during

the conversion process and was quickly corrected.

Making the AeroModel into the CODBAeroModel class required adding CODB accesses and

providing Performer support. Instead of overloading AeroModel methods, a new class was created that

inherited behavior from the AeroModel Class. This allows future developers to choose between a CODB

aircraft model and a non-CODB aircraft model. The new CODBAeroModel interface is shown in

Figure 4-10 and provides additional methods beyond the basic AeroModel Class. A link to the CODB was

added to the constructor of the class to provide CODB access. The constructor was also overloaded to

allow the developer to choose the aircraft the model would emulate. In addition an AircraftStruct was

added to the CODB control structure to store the aircraft model's output. The decision was made to only

place in the container information that is required by other simulation entities to limit container size and

reduce complexity. The container entries can be seen in Figure 4-11. Input to the model is provided by the

IOHotas class via the HotasStruct CODB structure. The Fly method is responsible for all input and output

processing. Input is handled at the entry to method with the AircraftStruct CODB container updated

4-17

//Constructor f/Methods to set input parameters
AeroModelO; //defaults to trimmed and F16 float GetNorthPoso;
AeroModel(AircraftType ac-type, int trim-aircraft); float GetEastPoso;

float GetDownPoso;
//Methods to get input parameters float GetThetao;
float GetStickLateral(); float GetPhiO;
float GetStickLongitudinal(); float GetPsio;
float GetThrottleo; float GetAlphao;
float GetRudderPedalO; float GetBetao;
int GetSpeedBrakeCommando; float GetMacho;
float GetThrustReversero; float GetGLoadO;
int GetPilotedo; float GetAirspeedo;
float GetPitchTrimCommando; float GetGammaO;
float GetRollTrimCommando; float GetSigmao;
float GetYawTrimCommando; float GetMuO;

float GetSpeedBrakeAngleo;
//Methods to set input parameters float GetVelocityo;
void SetStickLateral (float lateral); float GetRollRateo;
void SetStickLongitudinal(float longitud); float GetPitchRateo;
void SetThrottle(float throt); float GetYawRateo;
void SetRudderPedal(float rp); float GetXLoado;
void SetSpeedBrake(int asb); float GetYLoado;
void SetThrustReverser(float tr); float GetZLoado;
void SetPiloted(int p); float GetRhoo;
void SetPitchTrimCommand(int trim); float GetFuelFiowo;
void SetRollTrimCommand(int trim); float GetFuelAmount;
void SetYawTrimCommand(int trim); float GetAircraftWeighto;

float GetSustainedLoadFactoro;
//Reset the aircraft to position specifiec float GetMaxlnstantLoadFactorO;
I/Retained firstfunction for compatability can be float GetThrusto;
replaced by next function

float GetDrago;
void ResetPosition(float acft-x, float acfty, float acft-z, float GetAircraftStructuralLimito;

float acft-mach, float acftLpsi); float GetNaxAOAo;
void ResetPosition(float acft-x, float acft-y, float acft-Z, float GetMinAOAO;

float acft-psi, float acft-theta, float GetXVelocityo;
float acftphi, float acft-mach); float GetYVelocityo;

float GetZVelocityo;
I/Fly aircraft one time step float GetXAccelerationo;
void Flyo; float GetYAccelerationo;

float GetZAccelerationo;
float GetRollAccelerationo;
float GetPitchAccelerationo;

_____________________________________ I float GetYawAccelerationo;

Figure 4-9. C++ AeroModel Interface

4-18

CODBAeroModel0; //defaults to F-16 and trimmed
CODBAeroModel(AircraftType ac-type, int trimaircraft);
void ResetPosition(float acft_x, float acft-y, float acft_z,

float acftmach, float acft heading);
void ResetPosition(float acft-x, float acft-y, float acftz,

float acftheading, float acftpitch, float acftroll,
float acftmach);

void Flyo;
void GetPerformerPos(float& x, float& y, float& z);
void GetPerformerEuler(float& h, float& p, float& r);
void GetPerformerLinearVel(float& x, float& y, float& z);
void GetPerformerLinearAcc(float& x, float& y, float& z);
void GetPerformerAngularVel(float& h, float& p, float& r);
void GetPerformerAngularAcc(float& h, float& p, float& r);

Figure 4-10. C++ CODBAeromodel Interface

after the aircraft has flown out a single time step. Performer support was provided by using Performer

coordinates in the AircraftStruct and creation of methods to provide Performer coordinates, orientations,

velocities, and accelerations. The changes required between the Aircraft Model's flat earth coordinates and

Performer's flat earth coordinates are discussed in the Zurita reference [ZURI96].

float x, y, z; //degrees
float h, p, r; //degrees
float velix, vely, velz, //meters/sec
float velh, vel_p, velr; //degrees/sec
float mach-speed; /mach
float thrust;
float fuel; //lbs
float speed; /in knots
float rpm;
float leftrpm;
float right-rpm;
float g_load;
float altitude; /meters
float v-velocity; //meters/sec
float angle-of-attack; /in degrees
float beta; /in degrees
float speed-brake, /in degrees
int afterburner /O = off, 1 = on

Figure 4-11. CODB AircraftStruct Container

4-19

The final step in making the aircraft model reconfigurable was changing the ResetPosition method

of the CODBAeroModel class to allow any orientation and speed. When a user changes the aircraft type by

switching CODBAeroModels in the Airplane class they need to begin flying the new model in the same

orientation as they were last oriented. The C aircraft model only supported resetting the x, y, and z position

along with the aircraft's heading and mach number. A mach number that was insufficient to fly straight and

level would cause the software to core dump and quit executing. The constructor of the aircraft model was

changed to allow the user to specify whether straight and level flight was a prerequisite for the model's

initialization. The code that enforced this prerequisite was then enclosed with an if-then statement based on

the value passed into the constructor. In addition, modifications were made to the original C ResetPosition

function to allow the developer to set the entire orientation of the aircraft, heading, pitch, and roll. When

the developer calls ResetAircraftType to F- 16 in the Airplane class, the model is switched from a F- 15

CODBAeroModel to a F-16 CODBAeroModel. This is followed by a call to CODBAeromodel::

ResetPosition with the last position and orientation of the F-15 CODBAeroModel as the parameters.

simple radaro;
-simplejradaro;
simplejradar(float minrelativeazimuth,

float maxrelativeazimuth,
float min_relativeelevation,
float maxrelativeelevation,
float maxjrangemiles);

void geLazimuth(float& min_azimuth, float& maxazimuth);
void seLazimuth(float minazimuth, float max-azimuth);
void get.elevation(float& minelevation, float& maxelevation);
void set elevation(float minelevation, float maxelevation);
void getjrange(float& range);
void setjrange(float range);
//Check all entities in LocalCoordStruct for Radar visiblility
/update RadarStruct appropriately based on radar field of view.
void updateo;

Figure 4-12. Simple Radar Model Interface.

A second reconfigurable model was created to simplify the current radar model and allow

customization of the radar for several different aircraft. The 1995 VC's radar model was hidden inside the

INS class and provided no methods to set radar parameters. Additionally, the model only provided a visible

4-20

/ not visible designation and no other radar parameters, such as azimuth, elevation, and range. A diagram of

the new reconfigurable model with its interface is shown in Figure 4-12. The new radar class uses the

LocalCoordStruct container (contains all DIS entities, in flat-earth Performer coordinates) from the CODB

as input and places its output in the RadarStruct container. Both the LocalCoordStruct and RadarStruct

containers are shown in Figure 4-13. All active tracks in the LocalCoordStruct are evaluated for their

relative azimuth, elevation, and range to the RRVC. If the tracks are within the radar's field of view then

trackstate is set to Active for that track in the LocalCoordStruct, if not the trackstate is set to Inactive.

Figure 4-13 shows the structure of the input and output containers which allow correlation between them.

The radar track is in the same position in the RadarStruct as it is in the LocalCoordStruct to allow

correlation by other RRVC components if needed. Active track's position information is also inserted into

the container. The model is easily reconfigurable by using the Set methods to fit the specific aircraft's field

of view. and will provide a baseline for more complicated models.

Implementation of a reconfigurable weapons controller was much simpler than the aircraft or the

radar models. The weapons controller class provides an interface to cannon, bomb, and missile classes for

the simulation. The weapons class uses a file to initialize the number of weapons and their position.

Unfortunately, this only allowed one weapons controller because the filename was hard-coded into the

class. The init method of the weapons controller class was changed to include a character string that

indicates the file to be used for weapons initialization. In addition, the maximum number of each type of

weapon allowed by the class was increased to allow weapon load outs associated with multiple aircraft.

The changes were simple, but needed to allow different aircraft to use the same weapons controller class to

control their weapons.

4-21

Background Structures Background Structures
struct entity-appearancejrecord { struct radar-entitystruct I

//Entity Location in DIS coordinates //Entity's Radar Orienation and Position
double x; H meters float x,
double y; H meters float y,
double z; //meters float z,

float h,
//Entity Orientation in DIS coordinate system float p,
float psi; /radians float r,
float phi; /radians float az,
float theta; //radians float el,

float range;
I Entity Linear Velocity vector in DIS coordinates container__state track-state;
float-vector linearvelocity; // m/sec I;

I DIS ID RadarStruct
unsigned int site-id; struct radar_container
unsigned int application id; radar.entity-struc
unsigned int entityid; radarentity[MAXNUMBER

OFENTITIES];
//Local Use Only int number-active tracks;
unsigned short modell; float min _relative-azimuth, //degrees
unsigned short model2; float max-relative azimuth; //degrees

float min.relative elevation, //degrees
//Entity Description float max-relative-elevation; /degrees
char description[401; /ASCII characters ;

I/ Force Identifier
entity-alliance team;

// Enumerated type to determine type of entity

container-state entity-state;

entity-appearance record;

LocalCoordStruct
typedef struct entity-appearancecontainer
entity-appearancerecord
DIS_.entity[MAXNUMBER_OF_ENTITIES];

unsigned int numof active entities;
I entity-appearance container;

Figure 4-13. Comparison of LocalCoordStruct and RadarStruct

4.4. Replacing ObjectSim Functionality

Getting rid of ObjectSim in the VC impacted three areas of the implementation: changing the

viewpoint in the simulation, drawing entities, and interacting with the DIS components. Each of these areas

of functionality needed to be duplicated in the VC without using the ObjectSim framework. The viewpoint

in the VC is aircraft centered at the origin, due to Performer limitations, and was managed by an ObjectSim

class. The creation of a structured Performer entity tree is needed that will perform the entity management

4-22

task. Finally, interaction with DIS was encapsulated within ObjectSim and must be moved to the CODB

architecture (the DIS interface will be discussed in a following section of this chapter). These areas of

functionality had to be implemented to maintain the functionality and performance associated with the 1995

VC.

The viewpoint must be centered at the origin because of Performer limitations. So not only must it

be aircraft centered, this is expected for an aircraft simulation, but, the aircraft must be also centered at the

origin. This is because Performer has limited resolution for viewpoint position and as the viewpoint begins

to get further away from the origin it begins to shake or wobble as it loses the resolution necessary to

maintain a steady viewpoint. This behavior is apparent in any large virtual Performer environment such as

the VC where viewpoint resolution is important. The problem was not apparent in the baseline CODB

application that moved the viewpoint around the world with the aircraft because the viewpoint was above

and behind the aircraft. When the viewpoint was moved inside the cockpit, where small movements in

viewpoint make all the geometry shake around, the problem was readily apparent. The problem was fixed

using an algorithm f- m the ObjectSim View class (algorithm provided in Chapter 3 [SNYD93]. The.

algorithm moves the geometry of the aircraft to the origin and then moves all the rest of the world (DIS

entities and terrain) relative to the aircraft based on its position and orientation. Use of the algorithm

requires the Performer tree to be structured in such a way that all geometry can all be moved relative to the

aircraft. The algorithm is now in the VCRenderer class in the MakeFinalView method.

The Performer tree implemented in the VCRenderer has the same structure as the ObjectSim tree

structure. Figure 4-14 shows the top-level Performer tree's structure for RRVC. The tree has three

subtrees: DIS entities, RRVC aircraft, and Terrain. The pfDCS nodes above each of the subtrees allow the

Terrain and DIS entities to be manipulated by the MakeFinalView method, while the pfDCSs in the

Players subtree allow manipulation of the individual players. The pfSwitch node was added in the VC

subtree to allow switching between different aircraft geometries. Maintaining the current structure also

eased the integration of the weapons classes, that move weapon models from the RRVC subtree when they

are attached to the DIS entities subtree once they have been fired.

4-23

4.5. Replacing AFIT Pod Interface

Replacement of the AFIT Pod Interface focused on reducing the complicated nature of the AFIT

Pod and on allowing natural interaction with the RRVC virtual environment. The AFIT Pod consists of

several classes that must be inherited from and components of that must be over-ridden resulting in a

complicated class that is difficult to use. In addition, the Pod only allows interaction with buttons set on a

flat rectangular surface. To expand the interaction capability a class that encapsulates Performers built in

geometry picking functions was developed by Captain Brian Garcia. The class provides a way of

determining if a simulation object was selected by the user or if a portion of a larger object was selected.

By using geometry, the class is able to accurately pick irregularly shaped objects instead of always picking

against a square area as in the AFIT Pod. The RRVC research project extended and modified the basic

Selection Manager class to maintain a consistent visual interface with the 1995 VC and to allow a developer

to customize their interaction techniques.

The basic class is simple to use and requires minimum developer interaction. The class requires

the user to name all of the selectable Performer nodes. The user calls the Selection Manager class

constructor, passing it the top of the Performer tree to be selected and the Performer channel where the tree

will be displayed. These actions set up the Performer tree for selection. The class works by getting the path

through the tree of the node selected and the poll method returns an integer that indicates the selected node.

For instance, by naming the altimeter node NODE_0001 the poll method will return a one (1) to the calling

routine when that node is selected. The class was extended to allow multiple level of nodes to be selected.

A user can use the SetSelectionLevel method to determine which level interests them (i.e., the instrument

panel (level 0), the altimeter on the instrument panel (level 1), or the switch on the altimeter (level 2)). The

model was also expanded to allow the user to determine what was selected at any level of the Performer tree

and to allow node selection with any mouse button. A final addition to the class allows the user to pass a

user-defined segment into the class for picking purposes in the poll method. The process may seem

complicated, but it is greatly simplified from the AFIT pod protocol (see Figure 4-15 for a comparison of

what is needed to update a button in each protocol). The figure is needed for comparison purposes and

4-24

illustrates a basic button interaction. The actual instrument panel buttons are more complicated because

they use Performer geometry for the buttons instead of the default GL buttons provided by the button-type

class. The F-15 Pod interface has an additional class that is responsible for maintaining the state of this

geometry based on the GL buttons. The new Selection Manager does not have any default buttons and uses

only user-defined geometry for buttons, which is the more complicated case.

Performer
Top-Level

Scene

Performer
Scene
DCS

Performer

RRVC Dcs Terrain
Geometry (# entities)

Performer
Switch DIS

Players
(# entities)

F-15 VC F-16VC
Geometry Geometry

Figure 4-14. RRVC's Top-level Performer Tree.

4-25

AFIT Pod New Selection Manager
Create class inheriting from PanelType including the following virtual Create and Initialize the Selection Manager.
functions:

-- Sets state information for all sub-panels on panel --Add the button geometry to the Performer tree and
void UpdateChildren (pfSeg* Segment, int MouseButtonStatus, name the nodes to be selected.

pfVec3 XFinger_-Marker) pfNodeName(AltimeterSwitch,
-- Returns "hard-coded" vertex information for the button "NODE 0001");
void GetPoint-l (pfVec3& Point)
void GetPoint_2 (pfVec3& Point) --Create a SelectionManager passing the Performer
void GetPoint_3 (pfVec3& Point) subtree that can be selected, the channel the tree will
void GetPoint_4 (pfVec3& Point) be displayed on, and the key string to be searched for
--Sets up the pre- and post- callbacks for the panel (in this case "NODE_)
void Register..Callbacks 0 SelectionManager(pickabletree,
--Initializing of any buttons, etc. that belong to this panel channel, "NODE-");
void Initialize-Children 0

The panel class should have as an instance variable a sub-panel that must be During each time step of the application the following
of a class inheriting from SubPanelType including the following virtual calls must be made:
functions:

--Initializing of any buttons, etc. that belong to this panel --Poll the Selection-Manager
void InitializeChildren 0 button-pressed = SelectionManager.poll;
-- Sets state information for all buttons on sub-panels
void Update-Children (pfSeg* Pointer-Finger, -- If button pressed = I then the AltimeterSwitch has

int MouseButtonStatus, been pressed and the state of the button can be
pfVec3 X_.Finger._Marker) updated by translating or rotating the geometry as

-- Draws the GL buttons if required desired.
void Draw Children0

The newly derived sub-panel class has an instance variable of Button-Type
that defines button size, orientation, color on/off, text, and arrow orientation
(if desired).

The variable of newly derived panel class is created, that also creates a
sub-panel and a button.

A variable of type mouse is created.

The panel is then added to the mouse with the method AddPanel that
describes the panel's position and orientation.

The panel is made active with the method panel.SetState. If more than one
panel is created the user must use the right mouse to switch between panels.

During each time step of the application the following calls must be made:
The method mouse.propagate is called during each cycle of the
application to check if a the mouse has moved and if a button
was pressed (to change panel of interest)
--Returns starting and ending coordinates for a segment
beginning at cursor and going through the panel of interest.
mouse.GetPointer_Info (StartX, Start_Y, Start_Z

EndX, EndY, EndZ);
--Convert pointer xyz coordinates into pfseg
PFSETVEC3 (StartPoint, StarLX, StartY, StartZ);
PFSETVEC3 (End-Point, EndX, EndY, EndZ);
pfMakePtsSeg (Segment, StartPoint, End-Point);
--Check to see if the user is depressing the left mouse button.
Mouse_Left_Button = Mouse.Get_Mouse_LeftButton_.Status0;
--Check mouse.CurrentPanel to see that panel is active (in
this case there is only one panel) and call the update for that
panel. This call will also update the state of any buttons that
were pressed.
panel.Update (Segment, MouseLeftButton);

Figure 4-15. Comparison of ART Pod Interface and Selection Manager Interface.

4-26

The additional capabilities provided by the Selection Manager for the F-16 cockpit provide

interaction techniques that are more dynamic then those in the F-15 cockpit. The Selection Manager was

not integrated into the F-15 cockpit because of the time associated with the change and it provides a good

contrast between the two selection methods. To move a switch that has a rotation range of +/- 90 degrees,

the F- 15 cockpit required right mouse clicking on the button to move it clockwise one setting. The user

could not move the button counter-clockwise until the button had reached its maximum clockwise rotation.

If a button has six settings and was on the second clockwise setting the user had to press the button four

more times to cause the switch to reset at its minimum clockwise rotation. The change from moving one

setting at a time in the clockwise direction to suddenly jumping from setting six (maximum clockwise

rotation or 90 degrees rotation) to setting one (minimum clockwise rotation or -90 degrees rotation) is

unnatural to the user. This is unnatural because it is not how the switch actually reacts in the airplane. The

new selection manager allows a user to select cockpit switches or dials with multiple mouse buttons. This

capability provides the developer with the ability to move switches counter-clockwise if the left mouse

button is pressed and clockwise if the right mouse button is pressed. The switch stops at both its minimum

and maximum settings with no unnatural jumping. This ability also allows the developer to create dials that

move left or right based on mouse input and the F- 16 VC uses the middle mouse button to rotate the dial

faster in either the left or right direction. The Selection Manager is easily customizable and allows

developers greater flexibility in developing geometry selection programs. All new development in the

AFIT VC should make full use of this class to ease development and to examine more natural cockpit

interaction techniques.

4.6. Distributed Simulation Interface

The RRVC DIS simulation interface is through the World State Manager 3.0 (WSM). WSM

provides both PDU send and receive capability using the CODB architecture. The World State Manager

provides containers for broadcasting aircraft and weapons entity state PDUs and for receiving entity state

PDUs. The structures contain similar data but have a different structure as can be seen in Figure 4-16.

4-27

Background Structures Background Structures
struct entity-appearance_record { //Entity Location in DIS coordinates

// Entity Location in DIS coordinates doublevector location; //meters
double x; /meters
double y; //meters //Entity Orientation in DIS coordinate system (body coord)
double z; meters // system

taitbryan-angles orientation; fl radians
H Entity Orientation in DIS coordinate system
float psi; /radians /Entity Linear Velocity in World Coordinates
float phi; //radians floatvector velocity; H meters per second
float theta; I radians

H Entity Linear Acceleration in World Coordinates
I Entity Linear Velocity vector in DIS coordinates floatvector acceleration; // meters per second
float-vector linear-velocity; im/sec d

/ DIS ID /Entity Angular Velocities in Body Coordinates
unsigned int site_id; /Around the appropriate axis
unsigned int application-id; floatvector aroundaxis; /radians per second
unsigned int entityid;

/Entity Description
/ Local Use Only char description[48]; /ASCII characters
unsigned short model 1;
unsigned short model2; I/Individual element state variables

containerstate state;
fl Entity Description attached-part-placement station;
char description[40]; /ASCII characters H attached_part_status status;

II Force Identifier ownstate_record;
entityalliance team;

OwnStateStruct
H Enumerated type to determine type of entity typedef struct (
containerstate entitystate; own_staterecord

own-entity[MAX NUMBER_OFOWNENTITIES];
unsigned int num of active_entities;

entityappearance record; } own-statecontainer;

WSMEntityStruct
typedef struct entity-appearance-container {

entity~appearance-record
DIS-entity[MAXNUMBER_OF_ENTITIES];

unsigned int numoLaciveentities;
} entityappearancecontainer;

Figure 4-16. Send and Receive DIS CODB Containers.

The WSM uses these structures to provide a DIS capability to the RRVC, allowing it to take part in

distributed training exercises. The RRVC uses the entity information provided by the WSM to update its

own representation of the virtual environment. The RRVC sends out entity state information to other

entities on the network indicating its state information, including the type of aircraft it represents and its

position and orientation. Implementation of the RRVC's DIS interface was to be broken down into two

distinct steps: sending out entity state PDUs and receiving entity state PDUs. However, due to limited

4-28

functionality of the initial World State Manager, the sending out of weapons entity state PDUs was delayed

and became a third step to the DIS integration process.

Receiving entity state information is the most complex portion of the DIS interface because the

entities must be converted into the local simulation's world coordinate system and then displayed accurately

to the pilot. This follows a four step process:

1. Read WSMEntityStruct container from CODB,

2. Convert DIS coordinates into Performer flat-earth coordinates,

3. Store coordinates in LocalCoordStruct (container identical to WSMEntityStruct) container in

CODB, and

4. Update position and orientation of aircraft in Performer geometry.

A library function, ConvertToLocal, was created to take in a pointer to a LocalCoordStruct,

WSMEntityStruct, and to a RoundEarthUtils class. The RoundEarthUtils class is a class used to convert

between DIS coordinates and Performer flat-earth coordinates. The Convert To Local function reads the

data from the WSMEntityStruct container, converts it using the RoundEarthUtils class, and the stores it in

the LocalCoordStruct container. The function insures that all data from the DIS container is placed in the

local container. If any items are added or removed from the WSMEntityStruct container this function must

also be updated to reflect those changes. The VCRenderer class method Update-Players uses the

LocalCoordStruct container to update the position and orientation of the Performer geometry that represents

the aircraft.

Sending entity state information is easy with the WSM. The Airplane class broadcasts its

positioning by placing its entity state information into the ownstaterecord in position zero of the

own-entity array in the OwnStateStruct. The coordinates must be converted from Performer flat-earth to

DIS coordinates for transmission. RoundEarthUtils performs this task as it did in the Receive situation.

The description field of the container is updated to reflect the current aircraft being modeled by the RRVC.

Finally, a call is made to the WSM indicating position zero holds information of interest. The structure is

4-29

updated every frame of the simulation. The WSM uses dead-reckoning to determine when to send out a

packet on the network, without any application interaction.

The final step of DIS integration was sending out entity state information for RRVC weapons. The

same process is followed by the weapons for sending out entity state information; however, it only happens

after the weapon has been dropped or fired. To indicate a weapon has been fired a Fire PDU must be sent

out on the net. The WSM sends out a Fire PDU after being notified by the function

broadcastweapons-fire. The WSM uses the index passed to broadcast-weapons-fire to determine the

position in the OwnStateStruct container where the weapon's information is stored. A Detonation PDU

indicates the explosion of a weapon and is handled in the same manner, with a call to

broadcastweapons-detonation. The index used to determine the position of the weapon in the array is

determined at initialization time, depending on the number of available weapons. The RRVC uses indexes

from ten to the maximum index minus one to store weapon state information. The maximum index position

is saved for bullet information that is communicated only with Fire and Detonation PDU (no entity state

PDUs in between). The weapon models had already been interfaced to the old WSM, so the determination

of when certain PDUs should be sent was already available. However, instead of having each weapon

interfacing directly to WSM (as it was in the 1993 VC when weapons were last available), the DIS interface

is primarily encapsulated in the WEAPONSCONTROLLER class.

4.7. Conclusion

The development of the RRVC has shown that a cockpit can be rapidly reconfigured between two

separate aircraft, a F- 15 and a F- 16. Each stage of the implementation provided a feature to the VC that had

not existed before. Implementation of the CODB architecture allows new multiprocessor simulation

components to be created without worrying about how memory access takes place. The entire F-15 VC was

reimplemented using the new architecture and all ObjectSim code was removed. A new F-16 VC was

developed and integrated into the new architecture providing a reconfigurability testbed. Several new

components were developed to provide a sample simulation interface, including a simulation rendering

component, aircraft model, radar model, cockpit model, and new geometry selection manager. The F- 16

4-30

was built upon these components that provide both a sample and basis for future expansion of the RRVC.

A new World State Manager based on the CODB was integrated into the simulation to provide an interface

to other DIS environments. The final result is a Rapidly Reconfigurable Virtual Cockpit that can take part

in DIS exercises as either a F-15 or a F-16 or both.

4-31

5. Result

This chapter discusses the results associated with each area of the RRVC's design. This section

refers back to the requirements and goals discussed in Chapter Three, primarily Table 3-1. For

convenience, Table 3-1 is broken into sections and provided in Tables 5-1 to 5-6. The results in all areas

were very favorable. The RRVC was able to successfully simulate both an F-16 and F-15 using the CODB

architecture. The RRVC was able to switch between aircraft models in a single frame. With a frame rate

between 12 frames to 15 frames per second, the time required to switch cockpits was less than 0.1 seconds.

DIS support was provided by the CODB-based World State Manager and allowed broadcast of entity state

PDUs and weapon state PDUs. The World State Manager also provided entity state information for

networked entities. While the overall results were favorable, areas for improvement include a small portion

of the cockpit modeling and a limited DIS interface. The results in each of the six areas of VC research

(reconfigurable software architecture, reconfigurable cockpit geometry models, reconfigurable simulation

components, replacement of objectsim functionality, improved cockpit interface, and distributed simulation

interface) are covered in detail in the following sections.

Table 5-1. Reconfigurable Software Architecture's Requirements.
1. Reconfigurable Software Architecture
1.1. Allow rapid reconfiguration of both aircraft geometry Architecture should allow switching between aircraft in
and simulation components (see REQs 2 and 3) less 1 second.
1.2. Increase flexibility of simulation framework by Allow all Performer functionality to be available to
eliminating ObjectSim's constraints developers by completely removing ObjectSim from VC
1.3. Provide architecture that will support all needed Utilize container-based approach to storing simulation data
simulation components and be extensible
1.4. Support Multiple Aircraft Configuration supports at least two aircraft
1.4.1. Integrate existing F-15 VC into CODB architecture CODB F- 15 VC works identically to 1995 F-15 VC.
1.4.2. Develop a F-16 VC F-16 VC with appropriate aircraft model, sensors and

weapons (REQ 3).

5.1. Reconfieurable Computer Architecture

The result in the reconfigurable computer architecture area are promising. The CODB was a good

replacement for ObjectSim in this application. The architecture also allowed for quick reconfiguration, less

than 0.1 seconds. Figures 5-1 and 5-2 show a view of the aircraft and cockpit of the F-16. Figures 5-3 and

5-4 show the F-15 aircraft and cockpit after reconfiguration. Each requirement for

5-1

Figure 5-1. F-16 Aircraft.

___ t g

Figure 5-2. F-16 Instrument Panel.

5-2

Figure 5-3. F-15 Aircraft.

Figure 5-4. F-15 Instrument Panel.

5-3

this section will be discussed with its goal and the result actually achieved. For convenience Table 5-1

restates the requirements and goals for this section from Table 3-1.

5.1.1. Requirement 1.1: Increase flexibility of simulation framework by eliminating ObjectSim 's

constraints. All ObjectSim components were removed from the simulation easing the integration of 1/0

devices into the simulation. All Performer functionality was visible to the simulation developer.

5.1.2. Requirement 1.2: Allow rapid reconfiguration of both aircraft geometry and simulation

components. The RRVC met its goal of switching between a F- 15 aircraft and a F- 16 aircraft in less than

one second. In fact the switch was accomplished in one simulation frame, less than 0.1 seconds. Each

component of the RRVC switched to the appropriate model for that aircraft type, including aerodynamics,

sensors, weapons, aircraft geometry, cockpit geometry, and DIS representation. The switching of the

aircraft geometry and cockpit geometry was visually observed. While a software debugger was used to

determine if the other simulation components were correctly switched.

5.1.3. Requirement 1.3: Provide architecture that will support all needed simulation components

and be extensible. The CODB approach was used extensively in the development of the RRVC. The

CODB eased the development process by focusing on containers instead of classes. For instance while

awaiting the completion of the World State Manager, testing of the DIS interface was needed; however, no

functionality was complete in the WSM. For testing, a non-DIS WSM was developed that filled the

WSMEntityStruct container in the CODB. All access to DIS information was then accomplished using this

container. When the WSM became available, the non-DIS WSM was commented out and the container was

then filled by the DIS-WSM without any impact to the development time. The container approach also

aided reconfiguration because the many of the components did not care what type of aircraft was being

simulated only what information was stored in the containers. For instance, the weapons do not need to

know what aircraft they are attached to, they only need to know the position and orientation of the aircraft,

provided in the CODB.

5-4

5.1.4. Requirement 1.4: Support Multiple Aircraft. The goals for this requirement was to support

both the current F-15 VC and a F-16 VC. Both goals were successfully reached. The F-15 VC was

integrated into the CODB architecture and into the Airplane class. All F- 15 VC components were tested

and provide the same functionality under the CODB architecture as they did under the ObjectSim

architecture. A F-16 was created from scratch using the CODB and also integrated into the Airplane class.

More information on the results of the F- 16 development are included in discussion of requirements 2 and

3. The airplane class is used to provide a place for all aircraft simulation components and automates the

switching between aircraft types. The Airplane class can easily be extended to include as many different

aircraft types as needed.

Table 5-2. Reconfigurable Cockpit Geometry Requirements.
Requirement Goal

2. Reconfigurable Cockpit Geometry Models
2.1 Allow switching between different aircraft cockpits Switch between F- 15 and F- 16 cockpits in less than one

second
2.2. Create photo-realistic F-16 Instrument Panel Cockpit instruments same size, shape, and coloring of

actual display
2.2.1. Use anti-aliased textures for cockpit text All text in cockpit is anti-aliased to increase realism
2.2.2. Design textures to be reusable in other aircraft All text textures can have any foreground or background

color and any font size
2.2.3. Create realistic dials and needles for instruments Entire instrument panel implemented in DWB to gllow

addition of materials and lighting effects

5.2. Reconfigurable Cockpit Geometry

The reconfigurable cockpit geometry area met all requirements met, see Table 5-2. Photo-realistic

displays were created for the F-16 cockpit. All instruments were correctly sized and positioned on the

instrument panel. Material and coloring effects were duplicated as precisely as possible. Texture maps

were used for the text in most of the cockpit instruments, except for the angle of attack indicator and

vertical velocity indicator. All texture maps were created using the technique discussed in section 4.2. All

dials and needles were implemented in DWB providing both material and lighting effects. F- 16 pilots were

used to evaluate the accuracy of the displays and found them to be very good [GREIR96], [ULST96].

Photos of the entire instrument panel along with individual instruments is provided in in Appendix A.

5.2.1. Requirement 2.1: Allow switching between different aircraft cockpits. The Performer tree

implemented allows the application to switch aircraft geometries in less than 0.1 seconds, easily meeting its

goal. Each future cockpit will be placed at the same level of the Performer tree and switching will take

5-5

place in the same manner. Future switching may not happen as quickly depending on the amount of system

and texture memory required for future cockpits. If the available amount of memory is exceeded the

operating system will swap out memory that will cause a delay in the switching. Currently, the F-15 and

F-16 cockpits both easily fit into the computer's 190 megabytes of system memory and 4 megabytes of

texture memory.

5.2.2. Requirement 2.2: Create photo-realistic F-16 Instrument Panel. The F-16 VC cockpit is

the same size and dimensions when measured against an actual F-16 cockpit. All dimensions were

measured down to 0.125 inches. Anti-aliased textures were used for most of the instruments giving an

added realism beyond what was possible with the vector fonts available in GL (Requirement 2.2.1). The

angle of attack (AOA) and vertical velocity (VVI) indicators' displays were updated using GL's vector font.

Both displays in an actual F-16 are implemented mechanically by a sliding tape that could not be easily

duplicated in DWB. The tape slides behind the instrument face to display the actual reading for the

instrument. Creating a flat-tape is possible using DWB; however, the tape would be too long and would

protrude into the displays of other instruments. For this reason, a GL font-based approach was used that

simulates the sliding tape. All other instruments used text textures that were created using GIMP and can be

reused for other aircraft types (Requirement 2.2.2). Finally, all dials and switches were implemented using

DWB, except for the AOA and VVI (Requirement 2.2.3). The dials were a clear improvement over the

dials in the F-15 VC in terms of appearance (through the use of anti-aliased textures) and functionality

(because the dials actually turned instead of flashing the current value at discrete steps). When monitoring

the F-16 altimeter dials, it was clearly evident with a quick glance how fast the altitude was changing from

the motion of the dials. On the other hand, the F-15's altimeter's dials requires the pilot to actually read the

values on the dial and consciously determine how quickly they are changing.

5-6

Table 5-3. Reconfigurable Simulation Components' Requirements.
Requirement Goal

3. Reconfigurable Simulation Components
3.1. Develop reconfigurable aircraft aerodynamic model Aircraft aerodynamic model that can represent many types

of aircraft
3. 1. 1. Model must be able to represent multiple aircraft Model will represent both the F-15 and F-16 aircraft and
based on data alone have data to support additional aircraft
3.1.2. Model must utilize CODB based input and output All input and output from model is CODB based
3.2. Develop reconfigurable radar model A simple CODB-based radar model that represent multiple

aircrafts' field-of-views.
3.2.1. Radar must be able to change field-of-views while Any radar field of view attributes can be changed during
running execution of the application
3.1.2. Model must utilize CODB based input and output All input and output from model is CODB based
3.3. Develop reconfigurable weapons controller Weapons controller will support all current weapons and

multiple aircraft
3.3.1. Modify existing weapons controller to support A single weapons controller that will support multiple
multiple aircraft aircraft
3.3.2. Provide CODB container for weapons status data Weapon status information will be available to all

components in CODB
3.3.3. Create new bomb that will be guided to target by a Utilize existing bomb model to create an additional bomb
Virtual GPS receiver type that will use GPS for guidance and hit target

5.3. Reconfigurable Simulation Components

The three primary reconfigurable simulation components, aerodynamics, weapons, and radar, met

all the desired goals (see Table 5-3). All the models use CODB data for both input and output. The

aerodynamics model is able to represent many different aircraft and currently has data on the F-15,F-16,

F- 18, F-5E, and the A-10. The radar model can represent any radar field of view and can be manipulated

by the application based on the current aircraft type's radar field of view. The weapons controller has been

modified to work for any number of aircraft and provide representative weapons loads for those aircraft.

Finally, the bomb model was changed to create a GPS guided bomb. The bomb utilizes a virtual GPS

receiver to hit its target. The reconfigurable simulation components work as intended.

5.3.1. Requirement 3.1: Develop reconfigurable aircraft aerodynamic model. The results of the

reconfigurable aircraft model are based on its ability to reconfigure between different types of aircraft

(Requirement 3.1.1) and its ability to utilize CODB input and output (Requirement 3.1.2). The model was

not evaluated for performance accuracy because this model has been flown and accepted by Wright

Laboratory's Flight Simulation Branch. The model was made to be reconfigurable and testing was

accomplished on switching between F-15 and A-10 aircraft. The execution of the Airplane class was

examined in a software debugger to ensure the correct model was being executed. This provided hard data

5-7

on the switching of models. The difference in models is quickly evident to the pilot when switching

between an high-performance F- 15 and a relatively slow A- 10. All the performance the pilot has come to

expect with the F- 15 is suddenly lost with the A- 10, including turn rate, top speed, and maximum g-forces.

The HotasStruct container was used as input to control the model, with all buttons and switches acting as

expected. Unfortunately, the throttle, stick, and rudder input device that is available in the Graphics

Laboratory is in a F-15 configuration. All F-16 buttons and switches had to be given an F-15 counterpart to

allow a pilot to perform operations with switches that are available in the F-16 and not available in the F-15.

5.3.2. Requirement 3.2: Develop reconfigurable radar model. The radar model met both of its

requirements: dynamic field of views (Requirement 3.2.1) and utilization of CODB for input and output

(Requirement 3.2.2). The model was made to change the radar viewpoint during the execution of the

simulation. The radar updated only those targets in its new field of view. The CODB RadarStruct is used

as an output container for the model. This container was used to designate radar targets for weapon

targeting and to update the multi-function display's radar screen. For accuracy testing, targets were placed

at known locations in the environment with a non-moving radar (aircraft was stationary). The radar screen

provided visible proof that the radar model was working. Figure 5-5 shows a sample of the radar screen /

display.

5.3.3. Requirement 3.3: Develop reconfigurable weapons controller. The weapons controller is

used for both the F-15 and F-16 VCs and keeps weapon information for each type of aircraft (Requirement

3.3.1). The initial weapon load information is stored in a configuration file that is passed into the init

method of the weapons controller class. The number of weapons displayed on the HUD is used to verify

that the correct weapons load is available for each aircraft. In addition when reconfiguring the aircraft the

F-16's MFD's weapons screen also reflected the current weapons load for that aircraft, along with the

F-15's HUD display. The WeaponsStruct CODB container is used by the HUD and MFD to

5-8

t lt

17

Figure 5-5. Sample Radar Display on Multi-Function Display

update their displays (Requirement 3.3.2). Weapons also utilize the CODB's HotasStruct for weapon

release information.

5.3.4. Requirement 3.3.3: Create new bomb that will be guided to tareet by a Virtual GPS receiver.

The GPS-guided weapon works based on the bomb model that is part of the VC. The VC's bomb model

uses perfect information to guide it to target and always hits the target. This model is greatly simplified;

but, provides a starting point for modeling the interface for a GPS-guided munition. A more detailed bomb

model must be implemented to realistically test the ability of the virtual GPS receiver to guide a bomb to

target. Performance of the Virtual GPS receiver was consistent with the error rate expected in an actual

GPS receiver. The virtual GPS receiver provided a new GPS position every simulation frame that was used

for guidance. For information on the accuracy of the Virtual GPS Receiver see Captain Gary Williams'

1996 thesis [WILL96]. Given the errors associated with the GPS position the bomb had a miss distance of

approximately 11.95 meters.

Table 5-4. Replacing ObectSim Functionality Requirements.
Requirement Goal

4. Replace ObjectSim Functionality
4.1. Replace origin-centered viewpoint algorithm Overcome Performer viewpoint resolution problem
4.2. Structure Performer tree to support weapons model Create same top-level tree structure as that in 1995
and viewpoint algorithm ObjectSim VC

5-9

5.4. Replacing ObiectSim Functionality

The ObjectSim functionality was replaced meeting both requirements in this area (see Table 5-4).

The adoption of the ObjectSim View algorithm and the its Performer tree eased the integration of the

existing F-15 VC and the CODB architecture. ObjectSim also provides a DIS interface for network

simulation. The replacement of the VC's DIS interface will be discussed in Section 5.6.

5.4.1. Requirement 4.1: Replace origin-centered viewpoint algorithm. The elimination of the

viewpoint jittering was quickly apparent after implementing the viewpoint-at-origin algorithm in

ObjectSim's View class [SNYD93]. No viewpoint jittering has been observed in the hundreds of trial runs

made with the RRVC.

5.4.2. Requirement 4.2: Structure Performer tree to support weapons model and viewpoint

algorithm. A Performer tree in the same basic structure as the ObjectSim tree. The results of achieving this

requirement are observed in other areas, such as elimination of viewpoint jitter and correct weapons display.

Viewpoint jitter is discussed above. The weapons are switched from the VC portion of the tree while

attached to the aircraft and then moved to the DIS players portion of the tree when released. This switch is

built into the model and the Performer tree had to maintain the same structure to allow all weapons to be

displayed correctly.

Table 5-5. Replacing AFIT Pod Interface Requirements.
Requirement Goal

5. Improved cockpit interface
5.1. Allow selection of three dimensional panels and Point and click interface for any type of geometry in a
instruments single easy to use class
5.2. Allow selection of buttons from several different Any button can be selected at any time.
panels at once
5.3. Improve interface with switches and dials Dials and switches move left / right and slow / fast as

desired.

5-10

5.5. Replacine AFIT Pod Interface

The replacement of the AFIT Pod interface provided the greatest change between using the F- 15

VC and the F-16 VC. The F-15 cockpit was not changed from the ART Pod interface to the new Selection

Manager within the F-16 VC, it provides a good contrast between the two selection styles. The Selection

Manager provides an interface to the buttons and switches that are more natural then before. The movement

is more natural because it is more consistent with a human's natural interaction with switches and dials.

Any type of button or switch can be selected by the user with a minimum of overhead or setup. Each of the

requirements was designed, implemented and tested in the RRVC and met all desired goals (see Table 5-4).

5.5.1. Requirement 5.1: Allow selection of three dimensional panels and instruments. The user of

the RRVC can select any shape of panel and is no longer limited to two dimensions.

5.5.2. Requirement 5.2: Allow selection of buttons from several different panels at once. The user

can select any button or switch in the simulation. All buttons and panels are active all the time. No user

interaction is required to make a panel active as is the case with the F-15 VC.

5.5.3. Requirement 5.3: Improve interface with switches and dials. The interface with switches

and dials is greatly improved. The F-15 cockpit allows only a single mouse button to be used to select a

switch or dial (Note: A switch has several discrete settings, while a dial has a continuos motion).

Therefore, switches are implemented to move only in one direction and only change direction when the

limit is reached. The Selection Manager in the F-16 cockpit allows the user to use the left or right mouse

buttons to turn a switch in either direction. The left and right motion for dial is implemented in the same

manner, with the middle mouse button used to increase the rate of motion.

Table 5-6. Distributed Simulation Interface Requirements.
Requirement Goal

6. Distributed Simulation Interface
6.1. Send and receive entity state information for aircraft Communicate Entity State PDU information with DIS

using CODB
6.2. Broadcast weapon state information on network Communicate Fire, Entity State, and Detonate PDUs using

CODB.
6.3. Display all network entities to pilot Network entities appear correctly in Performer scene

5-11

5.6. Distributed Simulation Interface

The Distributed Simulation Interface met all of its requirements as defined in Table 5-6. All DIS

communication is via the CODB using the World State Manager. Ownship information for aircraft and

weapons state is broadcast over the DIS network. Network entity state information is received and

displayed to pilot as part of the world scene. The results of the DIS interface were primarily results

observed in the ModSAF application. ModSAF allows developers to create and view DIS exercises

[LORA95]. RRVC broadcasts PDU information that is then viewed in ModSAF, for accuracy. The

accuracy of entity state, weapon's fire, and weapon's detonate PDUs' performance can all be observed in

this manner. In turn, entities were created in ModSAF that were then broadcast over the network. The

RRVC out-the-window and radar displays are used in conjunction with the ModSAF displays to compare

positions of the ModSAF entities with the RRVC aircraft. Figure 5-6 shows a ModSAF screen with four

tanks. Figure 5.7 shows the RRVC's terrain. Using the same terrain in both ModSAF and the RRVC

allowed comparison entity position based on terrain features such as roads and rivers. For instance, notice

the hangman's noose right below the tanks on the ModSAF figure. This noose corresponds to the noose in

the center of the RRVC terrain figure. Terrain features were a valuable tool in comparing DIS positional

data and the RRVC's network entities' positional data. Testing in this area focused on determining the

accuracy of the RRVC's position to other DIS entities and the DIS entities' position in the RRVC. Testing

did not include the World State Manager's ability to send and receive PDUs, that was verified by the WSM

developer. RoundEarthUtils provides methods to convert between DIS round-earth coordinates and

Performer flat-earth coordinates. The RoundEarthUtils class could introduce a source of error to the

process in the conversion process; however, this class has been verified as part of a previous thesis effort

[ERIC93].

5.6.1. Requirement 6.1: Send and receive entity state information for aircraft. Entity state

information is being accurately portrayed to both the network and the pilot in the RRVC based on

observation from both viewpoints.

5.6.2. Requirement 6.2: Broadcast weapon state information on network. ModSAF shows

weapon entity state information and detonation information. Both of these attributes were observed in

5-12

ap 16 P-af SkMwA Imd~c Fwt IccD*sbn #Wmn - ndu.

-E ~

I s

Figure 5-6. ModSAF Terrain with Four Tanks.

Figure 5-7. RRVC Fort Knox Terrain.

5-13

ModSAF, using the same procedures used for evaluating DIS entity positional data, and found to be

accurate.

5.6.3. Requirement 6.3: Display all network entities to pilot. For testing purposes, ModSAF was

used to define an exercise over Fort Knox, Tennessee. The Fort Knox terrain is loaded into the RRVC as

its terrain file. Comparison of the ModSAF and RRVC target locations against the underlying terrain were

made for accuracy. All four targets were located over identical terrain features in both ModSAF and the

RRVC.

5.7. Conclusion

The RRVC met all the goals for the project and had good results in all areas. The RRVC

reconfigured between a F-15 and F-16 in less than 0.1 seconds. All F-16 instruments are functional and are

accurately sized, shaped, and oriented. The RRVC was flown by two F-16 pilots who commented favorably

on both the aircraft model and the instruments. The weapons models and radar models performed as

required; however, both models are low-fidelity and provide a starting place for future development. The

Selection Manager provides a substantial increase in functionality over the AFIT Pod, at considerably less

complexity. The WSM provides a DIS interface to provide the RRVC with network entity information and

broadcast RRVC information to the network entities. The RRVC provides a framework for future

reconfigurability development and a pilot training tool on the DIS network.

5-14

6. Conclusions and Future Work

Chapter 6 discusses conclusions I have made in developing a Rapidly Reconfigurable Virtual

Cockpit and areas of future research for the RRVC. The RRVC research project demonstrates how a

reconfigurable, distributed virtual cockpit environment can be assembled. The RRVC allows pilots to train

in either an F- 15 or F- 16 cockpit under a single application. The architecture provides a framework for

future VC research for additional aircraft types and more realistic models. This chapter discusses specific

conclusions for the five main research areas of this thesis effort: reconfigurable computer architectures,

reconfigurable cockpit geometry, reconfigurable simulation components, AFT Pod replacement, and DIS

interface. The RRVC also opens the door for many other areas of research and development including

reconfigurable software models and virtual cockpit interfaces. The largest area for future development is

DIS training environments. The RRVC is a training tool that can be used to train pilots across the country

in combat tactics or mission rehearsal. The training can be conducted with other pilots in the same building

or on the other side of the world. The RRVC is a low-cost training platform that prototypes many unique

training opportunities for operational squadrons.

6.1. Accomplishments

The RRVC research builds upon the foundation laid by previous thesis students who include the

following: Switzer, Gerhard, Erichson, McCarty, Diaz, Kesterman, Snyder, and Sheasby. These students

laid the groundwork for a virtual cockpit in the areas of modeling and distributed simulation in the AFIT

Graphics Laboratory. Their research allowed the development of a photo-realistic virtual F- 15 cockpit. My

research builds the concept of a F- 15 Virtual Cockpit into an application that can support multiple aircraft

in a single DIS exercise. The development of a reconfigurable architecture utilizing the CODB is of equal

importance. The advisor for this research, Lt Col Martin Stytz, developed the concept of the CODB

[STYT97]. The CODB is a simulation architecture built upon containers [STYT97]. The RRVC research

is one of the initial users of the CODB architecture and the only project to employ the CODB in a

reconfigurable application.

6-1

The specific accomplishments of this research are that the project has met all the requirements and

goals discussed in Chapter 3. The RRVC shows that a single application can support multiple VC aircraft

types. Additionally, the research project expands the number of CODB simulation components that are

available for other simulation developers. The CODB-based reconfigurable aircraft model developed

during this research is used by two other thesis students developing an Artificially Intelligent Wingman

[BENS96][ZURI961. The model allowed them to quickly create and control an F-16 aircraft using the

CODB. This research effort also enhanced the Selection Manager class that is being used by Wells

[WELL96]. The RRVC research has not only built upon previous VC efforts, but has laid the groundwork

for future VC research in the areas of reconfigurable simulation components and distributed training

exercises.

6.2. Conclusions

6.2.1. Reconfigurable Computer Architecture. The reconfigurable computer architecture performs

as intended. The selection of the CODB as the framework for simulation components greatly simplified the

components' interfaces. The architecture is extensible and will allow future developers to easily integrate

additional aircraft types into the framework. Removing ObjectSim eliminated the learning curve associated

with ObjectSim and increased developer flexibility. Keeping ObjectSim would have reduced the amount of

time needed to develop the RRVC application because of ObjectSim's built in DIS. In addition, no

ObjectSim functionality would have had to been replaced. However, the amount gained by replacing

ObjectSim in increased flexibility and decreased complexity outweighed any advantages to keeping

ObjectSim architecture.

The CODB was the most important choice in the architecture's development. It not only eased the

component interface task also eased integration. When the DIS component was unavailable for integration

and testing, a simple DIS simulator was developed that wrote representative DIS entity data values to the

DIS CODB container. Testing of components that required DIS information was able to continue on

schedule. When, the DIS component was available the DIS simulator was removed allowing the DIS

6-2

component to fill the CODB container. The RRVC worked the same with the DIS component as it had with

the simulator and because it only needed to read the CODB container no input/output methods had to be

modified or developed.

6.2.2. Reconfigurable Cockpit Geometry. The development of Cockpit Geometry is the most time

consuming portion of developing a Virtual Cockpit. The slight differences in each of the instruments make

reuse difficult. However, one area for reuse exploited in the F-16 VC design is the reuse of textures. While

the airspeed indicator may be different in a F-15 and F-16, it has many of the same words on the instrument

providing an opportunity for reuse. The design of reusable textures did not save much texture memory in

this situation because the F-15 VC cockpit textures were already created but it should save memory in

future aircraft implementations.

DWB was a satisfactory tool in which to develop the F-16's instrument panel. Problems such as

small application errors and several crashes caused a lack of trust with the DWB application. DWB also

provides almost no on-line help and the manuals are little more than a print out of man pages. The lack of

help prevented me from discovering several DWB features that were not easily accessed through DWB's

interface. An alternative to DWB is to build the instruments using GL. All the DWB models are eventually

translated into Performer nodes and Performer is built upon GL, so using GL would eliminate the

intermediate processing. However, developers may find GL modeling very complicated. I would

recommend using GL only if the developer has a great deal of experience in developing models using GL.

GL provides a great deal of flexibility; but, is many times more complicated then the menu-driven interface

provided by DWB. In conclusion, DWB is an acceptable modeling tool for those who do not know GL and

need to develop complicated models.

6.2.3. Reconfigurable Simulation Components. Reconfigurable simulation components greatly

eased the development of the cockpit. I would recommend that reconfigurable components be used where

ever possible. The models are difficult to develop; but, can sometimes be obtained from others involved in

aircraft simulation (system program offices, labs, simulation organizations). The reconfigurable models are

usually not perfect because they represent many different types of components. However, for the RRVC the

fidelity provided by the reconfigurable aircraft model was more than acceptable. Several F- 16 pilots

6-3

commented on the accuracy and performance of the reconfigurable aircraft model. The radar model

developed for the F-16 VC provided basic functionality and is another component that should be made

more realistic and reconfigurable. Most radars work in the same way and only have different powers,

wavelengths, or search patterns. A radar model could be made reconfigurable in the same way as the

aircraft model, by allowing this data to be determined based on radar type. Reconfigurable models give the

developer a step up in developing a new aircraft simulation; however, they are not always the best choice.

The instrument panels in aircraft are different enough that they should not be reconfigurable. Both the

geometry and functionality of the cockpit are so different that each aircraft uses a separate model. Placing

multiple instrument panels in a single model or class only increases the complexity of the class and does not

ease the development process. In conclusion, reconfigurable components were a good fit with the RRVC;

but, do not provide the answer in all situations (i.e., instrument panels).

6.2.4. AFIT Pod Replacement. The replacement of the ART Pod was the greatest single factor in

decreasing the complexity of the RRVC. As stated in Chapter Four, the AFIT Pod requires a great deal of

overhead for any selectable item. The AFIT Pod also limits where the items can be placed and how they

can be selected. The Selection Manager allows the developer a great deal more freedom in employing user

interaction with geometry in Performer. The interface also increases the speed in which dials and switches

can be manipulated. Speed is important because pilots control the aircraft with the stick and throttle and do

not like to spend a lot of time messing with switches and dials. On the other hand, an F-16 pilot told me

that most of the dials and switches are setup pre-mission and are not manipulated during the mission. The

Selection Manager also reduces the complexity of instrument panel. The F- 15 VC has four different ART

Pod classes that it utilizes to allow a pilot to select a button. The Selection Manager in the F- 16 VC only

uses one class and has more functionality. The Selection Manager provides an easy to use class with a great

deal of flexibility for interface design.

6.2.5. DIS Interface. The World State Manager is a good choice for a basic DIS Interface. The

WSM's development was a long process with a new release every week or two. As mentioned in the

Reconfigurable Architecture, the lack of a DIS interface was overcome in certain situations. When a CODB

structure for the interface existed, the development of a test driver to fill the CODB structure was a simple

6-4

task. However, in certain situations such as weapons fire and detonation, the CODB structure was not

defined so work was delayed until that functionality became available in the WSM. Having Mr. Sheasby,

the developer of the WSM, on-site was very important in flushing out the interface. The RRVC's DIS

interface should be expanded to include cockpit PDU's that would allow one RRVC to have the same

cockpit readings as another RRVC. This capability would allow a supervisor or trainer to monitor the status

of a pilot flying a RRVC somewhere else on the network. To develop this new capability it is necessary to

change the DIS interface. Without the developer on-site it would be extremely difficult to change the

WSM. Using a commercial DIS interface for this requirement may have prevented the development of

custom PDU's. However, a commercial DIS interface would have all basic DIS functionality from the start

and the RRVC would not have had to develop any temporary DIS simulators.

6.3. Future Work

6.2.1. Reconfigurable Computer Architecture. The only future work projected to the

reconfigurable computer architecture is a possible CODB improvement. Work is being done to move the

CODB from a multi-process architecture to a multi-program architecture. As a multi-program architecture,

the CODB could store data from multiple programs. The RRVC could use separate programs for input

devices. Each input device could be started independently of the RRVC and remove a level of complexity

from the application.

6.2.2. Reconfigurable Cockpit Geometry. The development of cockpit geometry is a time-

consuming process; however, a time savings is possible by automating the development of textures.

Currently, textures of words are created and each word is placed on a separate polygon. A better approach

would be to have a class of textured letters. The class would take strings as input and use the textured

letters to create the strings. A pfGroup representing the word would be returned, a Performer subtree

consisting of several letter-textured polygons.

6.2.3. Reconfigurable Simulation Components. The development of separate RRVC aircraft

could be greatly increased by utilizing more reconfigurable simulation components. Common aircraft

components (radar, IR, counter-measures,...) should be identified and reconfigurable models developed to

6-5

emulate their functionality. The reconfigurable components must be realistic in each of their configurations.

The weapon models and radar models in the RRVC have limited fidelity that should be improved before

any pilot training is attempted.

6.2.4. AFIT Pod Replacement. Future work in this area is to explore how to best utilize the new

Selection Manager. The Selection Manager should be integrated into the F-15 VC to provide a standard

interface between cockpits. A great deal of code must be changed to accomplish this; but, it would decrease

the complexity of the F-15 VC's cockpit.

6.2.5. DIS Interface. The DIS interface offers the greatest opportunity for future work. The

RRVC is intended to be a single entity training device (one pilot), although they can communicate with

other entities via DIS. The DIS interface allows pilots all over the world to fly together in a virtual

environment. The RRVC should be expanded to allow a single aircraft to represent multiple aircraft entities

in an exercise at the same time. The RRVC now switches between aircraft, so that only one aircraft exists at

a time. However, by allowing a single pilot to control multiple aircraft, much larger mission scenarios

could take place with fewer pilots. For instance, in a bombing mission rehearsal one pilot could use the

RRVC to represent all the support aircraft (a fighter lead, refueling aircraft, jammers) in the simulation.

The primary aircraft in the simulation, the bomber, would be flown by another pilot to carry out the primary

mission. All the necessary aircraft types would be in the simulation and only use two pilots. Some controls

would need to be added to the RRVC to allow each support aircraft to continue flying even though the

support pilot may be flying a different aircraft at the time. A more typical approach would have a single

RRVC represent all the support aircraft individually, one at a time. However, this would reduce the number

of overall players in the simulation, affecting the accuracy of the mission's environment. Either method

reduces the number of pilots needed to represent aircraft in the training exercise.

Another useful enhancement to the VC would be the addition of Cockpit PDUs. Cockpit PDUs

would broadcast cockpit settings over the network. Other RRVCs could then be made to read the PDU and

make their cockpit mirror another cockpit on the network. This would be especially valuable for training

purposes. An instructor could monitor the progress of a student performing a tactic elsewhere in the

country or the world. The instructor would not have to guess about what actions the pilot is taking because

6-6

the instructor can monitor all actions by looking at the cockpit. The instructor can monitor a trainee without

being in the aircraft or peering over their shoulder. The instructor could also switch between all the players

in a training exercise to evaluate multiple participants at a single workstation. The RRVC opens up the

door for many different training scenarios and evaluation capabilities.

6.4. Conclusion

The RRVC project has fulfilled all of the requirements and goals of this thesis effort. The RRVC

can switch between and F-15 and a F-16 in less than 0.1 second. The RRVC is built upon a reconfigurable

architecture that provides a framework for future aircraft development. The CODB was a good choice for a

RRVC architecture and eliminated many of the data storage issues that had to be addressed by previous VC

developers. The WSM provides a good basic DIS interface for all CODB applications. However, there is

room for improvement. More work needs to be accomplished in the area of reconfigurable simulation

components. Expansion of the DIS interface would open the door for many unique, networked, aircraft

training opportunities. The RRVC combines research in the areas of software architectures,

reconfigurability, cockpit modeling, and virtual reality to create a unique, distributed, virtual, training

device.

6-7

6. Conclusions and Future Work

Chapter 6 discusses conclusions I have made in developing a Rapidly Reconfigurable Virtual

Cockpit and areas of future research for the RRVC. The RRVC research project demonstrates how a

reconfigurable, distributed virtual cockpit environment can be assembled. The RRVC allows pilots to train

in either an F-15 or F-16 cockpit under a single application. The architecture provides a framework for

future VC research for additional aircraft types and more realistic models. This chapter discusses specific

conclusions for the five main research areas of this thesis effort: reconfigurable computer architectures,

reconfigurable cockpit geometry, reconfigurable simulation components, AFIT Pod replacement, and DIS

interface. The RRVC also opens the door for many other areas of research and development including

reconfigurable software models and virtual cockpit interfaces. The largest area for future development is

DIS training environments. The RRVC is a training tool that can be used to train pilots across the country

in combat tactics or mission rehearsal. The training can be conducted with other pilots in the same building

or on the other side of the world. The RRVC is a low-cost training platform that prototypes many unique

training opportunities for operational squadrons.

6.1. Accomplishments

The RRVC research builds upon the foundation laid by previous thesis students who include the

following: Switzer, Gerhard, Erichson, McCarty, Diaz, Kesterman, Snyder, and Sheasby. These students

laid the groundwork for a virtual cockpit in the areas of modeling and distributed simulation in the AFIT

Graphics Laboratory. Their research allowed the development of a photo-realistic virtual F-15 cockpit. My

research builds the concept of a F-15 Virtual Cockpit into an application that can support multiple aircraft

in a single DIS exercise. The development of a reconfigurable architecture utilizing the CODB is of equal

importance. The advisor for this research, Lt Col Martin Stytz, developed the concept of the CODB

[STYT97]. The CODB is a simulation architecture built upon containers [STYT97]. The RRVC research

is one of the initial users of the CODB architecture and the only project to employ the CODB in a

reconfigurable application.

6-1

The specific accomplishments of this research are that the project has met all the requirements and

goals discussed in Chapter 3. The RRVC shows that a single application can support multiple VC aircraft

types. Additionally, the research project expands the number of CODB simulation components that are

available for other simulation developers. The CODB-based reconfigurable aircraft model developed

during this research is used by two other thesis students developing an Artificially Intelligent Wingman

[BENS96][ZURI96]. The model allowed them to quickly create and control an F-16 aircraft using the

CODB. This research effort also enhanced the Selection Manager class that is being used by Wells

[WELL96]. The RRVC research has not only built upon previous VC efforts, but has laid the groundwork

for future VC research in the areas of reconfigurable simulation components and distributed training

exercises.

6.2. Conclusions

6.2.1. Reconfigurable Computer Architecture. The reconfigurable computer architecture performs

as intended. The selection of the CODB as the framework for simulation components greatly simplified the

components' interfaces. The architecture is extensible and will allow future developers to easily integrate

additional aircraft types into the framework. Removing ObjectSim eliminated the learning curve associated

with ObjectSim and increased developer flexibility. Keeping ObjectSim would have reduced the amount of

time needed to develop the RRVC application because of ObjectSim's built in DIS. In addition, no

ObjectSim functionality would have had to been replaced. However, the amount gained by replacing

ObjectSim in increased flexibility and decreased complexity outweighed any advantages to keeping

ObjectSim architecture.

The CODB was the most important choice in the architecture's development. It not only eased the

component interface task also eased integration. When the DIS component was unavailable for integration

and testing, a simple DIS simulator was developed that wrote representative DIS entity data values to the

DIS CODB container. Testing of components that required DIS information was able to continue on

schedule. When, the DIS component was available the DIS simulator was removed allowing the DIS

6-2

component to fill the CODB container. The RRVC worked the same with the DIS component as it had with

the simulator and because it only needed to read the CODB container no input/output methods had to be

modified or developed.

6.2.2. Reconfiizurable Cockpit Geometry. The development of Cockpit Geometry is the most time

consuming portion of developing a Virtual Cockpit. The slight differences in each of the instruments make

reuse difficult. However, one area for reuse exploited in the F-16 VC design is the reuse of textures. While

the airspeed indicator may be different in a F-15 and F-16, it has many of the same words on the instrument

providing an opportunity for reuse. The design of reusable textures did not save much texture memory in

this situation because the F- 15 VC cockpit textures were already created, but it should save memory in

future aircraft implementations.

DWB was a satisfactory tool in which to develop the F-16's instrument panel. Problems such as

small application errors and several crashes caused a lack of trust with the DWB application. DWB also

provides almost no on-line help and the manuals are little more than a print out of man pages. The lack of

help prevented discovery of several DWB features that were not easily accessed through DWB's interface.

An alternative to DWB is to build the instruments using GL. All the DWB models are eventually translated

into Performer nodes and Performer is built upon GL, so using GL would eliminate the intermediate

processing. However, developers may find GL modeling very complicated. I would recommend using GL

only if the developer has a great deal of experience in developing models using GL. GL provides a great

deal of flexibility; however, is many times more complicated then the menu-driven interface provided by

DWB. In conclusion, DWB is an acceptable modeling tool for those who do not know GL and need to

develop complicated models.

6.2.3. Reconfigurable Simulation Components. Reconfigurable simulation components greatly

eased the development of the cockpit and should be used where ever possible. The models are difficult to

develop, but can sometimes be obtained from others involved in aircraft simulation (system program

offices, labs, simulation organizations). The reconfigurable models are usually not perfect because they

represent many different types of components. However, for the RRVC the fidelity provided by the

reconfigurable aircraft model was more than acceptable. Several F- 16 pilots commented on the accuracy

6-3

and performance of the reconfigurable aircraft model. The radar model developed for the F-16 VC

provided basic functionality and is another component that should be made more realistic and

reconfigurable. Most radars work in the same way and only have different powers, wavelengths, or search

patterns. A radar model could be made reconfigurable in the same way as the aircraft model, by allowing

this data to be determined based on radar type. Reconfigurable models give the developer a step up in

developing a new aircraft simulation; however, they are not always the best choice. The instrument panels

in aircraft are different enough that they should not be reconfigurable. Both the geometry and functionality

of the cockpit are so different that each aircraft uses a separate model. Placing multiple instrument panels

in a single model or class only increases the complexity of the class and does not ease the development

process. In conclusion, reconfigurable components were a good fit with the RRVC, but do not provide the

answer in all situations (i.e., instrument panels).

6.2.4. AFIT Pod Replacement. The replacement of the ART Pod was the greatest single factor in

decreasing the complexity of the RRVC. As stated in Chapter 4, the AFIT Pod requires a great deal of

overhead for any selectable item. The ART Pod also limits where the items can be placed and how they

can be selected. The Selection Manager allows the developer a great deal more freedom in employing user

interaction with geometry in Performer. The interface also increases the speed in which dials and switches

can be manipulated. Speed is important because pilots control the aircraft with the stick and throttle and do

not like to spend a lot of time messing with switches and dials. On the other hand, an F- 16 pilot commented

that most of the dials and switches are setup pre-mission and are not manipulated during the mission. The

Selection Manager also reduces the complexity of instrument panel. The F- 15 VC has four different AFIT

Pod classes that it utilizes to allow a pilot to select a button. The Selection Manager in the F-16 VC only

uses one class and has more functionality. The Selection Manager provides an easy to use class with a great

deal of flexibility for interface design.

6.2.5. DIS Interface. The World State Manager provided the basic DIS Interface; however,

WSM's development was a long process with a new release every week or two. As mentioned in the

Reconfigurable Architecture, the lack of a DIS interface was overcome in certain situations. When a CODB

structure for the interface existed, the development of a test driver to fill the CODB structure was a simple

6-4

task. However, in certain situations such as weapons fire and detonation, the CODB structure was not

defined so work was delayed until that functionality became available in the WSM. The RRVC's DIS

interface should be expanded to include cockpit PDU's that would allow one RRVC to have the same

cockpit readings as another RRVC. This capability would allow a supervisor or trainer to monitor the status

of a pilot flying a RRVC somewhere else on the network. To develop this new capability it is necessary to

change the DIS interface. Using a commercial DIS interface for this requirement may have prevented the

development of custom PDU's. However, a commercial DIS interface would have all basic DIS

functionality from the start and the RRVC would not have had to develop any temporary DIS simulators.

6.3. Future Work

6.2.1. Reconfigurable Computer Architecture. The future work projected to the reconfigurable

computer architecture include a possible CODB improvement. Work is being done to move the CODB

from a multi-process architecture to a multi-program architecture. As a multi-program architecture, the

CODB could store data from multiple programs. The RRVC could use separate programs for input devices.

Each input device could be started independently of the RRVC and remove a level of complexity from the

application.

6.2.2. Reconfigurable Cockpit Geometry. The development of cockpit geometry is a time-

consuming process; however, a time savings is possible by automating the development of textures.

Currently, textures of words are created and each word is placed on a separate polygon. A better approach

would be to have a class of textured letters. The class would take strings as input and use the textured

letters to create the strings. A pfGroup representing the word would be returned, a Performer subtree

consisting of several letter-textured polygons.

6.2.3. Reconfigurable Simulation Components. The development of separate RRVC aircraft

could be greatly increased by utilizing more reconfigurable simulation components. Common aircraft

components (radar, IR, counter-measures, etc.) should be identified and reconfigurable models developed to

emulate their functionality. The reconfigurable components must be realistic in each of their configurations.

6-5

The weapon models and radar models in the RRVC have limited fidelity that should be improved before

any pilot training is attempted.

6.2.4. AFIT Pod Replacement. Future work in this area is to explore how to best utilize the new

Selection Manager. The Selection Manager should be integrated into the F-15 VC to provide a standard

interface between cockpits. A great deal of code must be changed to accomplish this, but it would decrease

the complexity of the F-15 VC's cockpit.

6.2.5. DIS Interface. The DIS interface offers the greatest opportunity for future work. The

RRVC is intended to be a single entity training device (one pilot), although they can communicate with

other entities via DIS. The DIS interface allows pilots all over the world to fly together in a virtual

environment. The RRVC should be expanded to allow a single aircraft to represent multiple aircraft entities

in an exercise at the same time. The RRVC now switches between aircraft, so that only one aircraft exists at

a time. However, by allowing a single pilot to control multiple aircraft, much larger mission scenarios

could take place with fewer pilots. For instance, in a bombing mission rehearsal one pilot could use the

RRVC to represent all the support aircraft (a fighter lead, refueling aircraft, jammers) in the simulation.

The primary aircraft in the simulation, the bomber, would be flown by another pilot to carry out theprimary

mission. All the necessary aircraft types would be in the simulation and only use two pilots. Some controls

would need to be added to the RRVC to allow each support aircraft to continue flying even though the

support pilot may be flying a different aircraft at the time. A more typical approach would have a single

RRVC represent all the support aircraft individually, one at a time. However, this would reduce the number

of overall players in the simulation, affecting the accuracy of the mission's environment. Either method

reduces the number of pilots needed to represent aircraft in the training exercise. A similar configuration

could be used by UAV controllers to control multiple UAVs from a single control station.

Another useful enhancement to the VC would be the addition of Cockpit PDUs. Cockpit PDUs

would broadcast cockpit settings over the network. Other RRVCs could then be made to read the PDU and

make their cockpit mirror another cockpit on the network. This would be especially valuable for training

purposes. An instructor could monitor the progress of a student performing a tactic elsewhere in the

country or the world. The instructor would not have to guess about what actions the pilot is taking because

6-6

the instructor can monitor all actions by looking at the cockpit. The instructor can monitor a trainee without

being in the aircraft or peering over their shoulder. The instructor could also switch between all the players

in a training exercise to evaluate multiple participants at a single workstation. The RRVC opens up the

door for many different training scenarios and evaluation capabilities. The RRVC also provides an

excellent testbed for future AFIT piloted simulation efforts.

6.4. Conclusion

The RRVC project has fulfilled all of the requirements and goals of this thesis effort. The RRVC

can switch between and F-15 and a F-16 in less than 0.1 second. The RRVC is built upon a reconfigurable

architecture that provides a framework for future aircraft development. The CODB was a good choice for a

RRVC architecture and eliminated many of the data storage issues that had to be addressed by previous VC

developers. The WSM provides a good basic DIS interface for all CODB applications. However, there is

room for improvement. More work needs to be accomplished in the area of reconfigurable simulation

components. Expansion of the DIS interface would open the door for many unique, networked, aircraft

training opportunities. The RRVC combines research in the areas of software architectures,

reconfigurability, cockpit modeling, and virtual reality to create a unique, distributed, virtual, training

device.

6-7

Appendix A: F-16 Cockpit Photographs

This appendix contains pictures of the cockpit developed as part of this thesis. For an overall

comparison, Figure A-1 provides an overall diagram of the F-16 cockpit. Figure A-2 shows the

corresponding F-16 Virtual Cockpit. The remaining photographs provide close-ups of the cockpit and

shows details not obvious from Figure A-2.

Figure A-i. F-16 Cockpit Diagram [OGDE94]

A-l

Figure A-2. Entire F-16 Virtual Cockpit Instrument Panel

-------- 0HN

Figure A-3. Top Right Portion of F-6 Virtual Cockpit

A-2

t ~ti Arta.
STB 3: *X CL

I ecUN- -- -
PG 28- -- -

I ~ CH EL
Figur---- Botm- ihtPrto-f--- itulCoki

[------ ----

Fiur A-5.O To CeteBPIOn fF ita oki

- - - - - --- -----

5|
Zn _

Figure A-6. Middle Center Portion of F-16 Virtual Cockpit

WI

Figure A-7. Bottom Center Portion of F-16 Virtual Cockpit

A-4

Figure A-8. Top Left Portion of F-16 Virtual Cockpit

CR I Om vDCT

Figure A-9. Bottom Left Portion of F-16 Virtual Cockpit

A-5

Appendix B: Common Object DataBase Software Listings

This appendix contains the source code for the Common Object DataBase (CODB). The CODB is
built upon the DoubleBuffer class, the header file is provided here for reference. The files include
commonobjdb.h, commonobj.cc, doublebuffer.h

B .1. commonobidb.h

#ifndef __CommonObjectDB_
#define _CommonobjectDB_

#include "doublebuffer.h"
#include <iostream.h>
#include <pf.h>
#include <pr.h>

* ***

CI Class: CommonObjectDB
//
// Functionality: Provides a double buffering scheme in which to
// store data. Structure will store any type of
// data and prevent multiple concurrent writes.
I/ All users in a process using the CODB will
II be returned a common pointer that will
// be used as the pointer to gain access to the class.
//

// Uses instance variable of type CODBStaticStuff to
// store the information about the doublebuffers for
I/ the numerous types of instantiations. The static
// function InitializeCODB must be called at the
// beginning of the program before declaring any
If CommonObjectDB's and after pfInit which
// initializes Performer shared memory. (see use)
//
// Use: Here is a sample code segment of CODB use:
//
II #include "commonobjdb.h"
II void main (int argc, char *argv[])
// {
II //Declare a pointer to the template CommonObjectDB which
// //will be instantiated on the structure
II //entity-appearancecontainer.
/ / CommonObjectDB<entity-appearance-container> *my-codb;
/-
II entity-appearance-container *disdata;
/-
II //Initialize Performer shared memory
// pfInito;
//
II //Initialize CODB data structures
II InitializeCODB();
I-
II //Instantiate the template using the CODB constructor which
II //takes as an argument an of the enumerated type StructureType
II //which indicates how the entity-appearance-container
II //structure will be referred to in the CODB (although
II //the same structure can be stored in the CODB under different
// //references / enumerated type values.
II SH->my-codb = new CommonObjectDB<entity-appearancecontainer>(LocalCoordStruct);
//
II disdata = (entity-appearance-container*)SH->mycodb->BeginRead(LocalCoordStruct);
II II User is returned a pointer to a structure of type entity-appearance-container
II II the structure pointed to contains the most recently written information
II II and the user can read this data. Given the user is given a pointer
II II they can also manipulate the structure which violates the intent of
II II this function and architecture.
II SH->my-codb->EndRead(LocalCoordStruct);
/-

B-I

// disdata = (entity-appearance-container*)SH->my-codb->BeginReadWrite(LocalCoordStruct);
// I/ User is returned a pointer to a structure of type entity-appearance-container
// I/ the structure pointed to contains the most recently written information
// // and the user can overwrite any part of the data structure. Note: This
// // routine involves some copying of the data, so if the entire structure is
// // to be overwritten use the BeginWrite/EndWrite methods discussed below.

// SH->mycodb->EndReadWrite(LocalCoordStruct);
//

// disdata (entity-appearance-container*)SH->mycodb->ReadWrite(LocalCoordStruct);
// I/ User is returned a pointer to a structure of type entity-appearance-container
// // in which the user must overwrite the entire structure. Any values which
// // are stored at the pointer's location are not valid values and should
// // not be used. Note: If the user wishes to overwrite the entire structure
// // without reading it this is the quicker method.
// SH->my_codb->EndWrite(LocalCoordStruct);
// I
I-
II Author: T. Adams and B. Zurita and D. Wells
/-
II Revision History:
II 24 Jan 96 TAA
/ - Initial write 24 Jan 96

II 17 Apr 96 WDW
// - Magic stuff added
II 25 Apr 96 VBZ
// - Added AcftCtrlStruct, StateStruct to StructureType enumeration.
// 08 May 96 WDW
// - Added EnvironStruct, PerformerWSMStruct to StructureType enumeration.
// - upped the number of possible structs to 20
// 08 May 96 TAA
// - changed BeginMagic and EndMagic to BeginReadWrite and EndReadWrite
// - overloaded BeginReadWrite and EndReadWrite to BeginMagic and EndMagic
// to support the other poor souls how have such a function name in
I/ their software.
II 08 May 96 WDW
// - Added EnvironStruct, PerformerWSMStruct to StructureType enumeration.
// - upped the number of possible structs to 20
II 06 Jun 96 GEW
// - Added PlanetStruct, MoonStruct
II 08 Jun 96 VBZ
// - Added HLDEStruct, LLDEStruct, CDEStruct to StructureType enumeration.
// 17 Jun 96 GEW
// - Added AsteroidStruct, CometStruct
I/ 18 Jun 96 GEW
// - Added TimeStruct, TailsStruct, SatStruct, SMStruct
II 20 Jun 96 GEW
// - Added GUIStruct
II 26 Jun 96 WDW
// - Added WSMEntityStruct, WSMEventStruct, WSMMgtStruct
// - Added OwnMgtStruct, OwnStateStruct (Own = Sending Struct to DIS Mgr)
I/ - Added WSMpfEventStruct, WSMpfEntityStruct

----- NEED TO REMOVE: WSMStruct, StateStruct, PerformerWSMStruct
// 27 Jun 96 TAA
// - Changed Constructor method to store buffers in the static
I/ array in the position of their enumerated value (st).
I/ this eliminates the searching previously required.
// - Added a new static variable codbinitialized to
// determine when CODB was initialized.
// - Added MAXCODB_BUFFERS constant for number of CODB buffers
If instead of using literal
II - Eliminated the FindStructure Routine
II - Changed BeginReadWrite and EndReadWrite to be able to
// write to any type of structure. Previously it worked
// incorrectly because the memcpy was on the wrong size of
// memory. This invovled adding the size of the data type
// into the CODB Structure.
II 19 Jul 96 VBZ
II - Changed HLDEStruct to SDEStruct, and LLDEStruct to TDEStruct.
II 29 Jul 96 GEW
II - Added WSMGPSStruct
II 1 Aug 96 BWG
II - Added PatientVitals, DoctorTreatment
// 1 Aug 96 VZ

B-2

// - Added WingmanStruct
II 09 Aug 96, VBZ
// - Copied entire contents of StructureType from the actual
SCODB in use by everyone. Steven Sheasby made some changes to

// DIS Manager, namely, he's not using WSMStruct anymore. Now
// he's using WSMEntityStruct instead.
// 4 Sep 96 BWG
// - Added Warmer, IV, Defib Structs
// 11 Sep 96 TAA
// - Combinded the two versions of CODB into one copy
// - added the following structures: CockpitStruct, RadarStruct,
// INSStruct, MFDStruct, WeaponStruct
// - Registered method to determine if a Structure has been
// registered in the CODB (taken from VBZ's implementation)
//01 Oct 96 TAA
// - Fixed a problem with CODB which occured when a new structure
II was added after a program forked. This caused both processes
// to have an inconsistent list of buffers data structure.
// This happened because the static members of the CODBStaticStuff
II class were being allocated from free store by the compiler
// and needed to be allocated from shared memory. The solution
// was to simulate static variables by ensuring that memory
II was only allocated once for them. This was accomplished
II by overloading the new operator in the CODBStaticStuff class
II to only allocate memory once for the class. In addition, a
// static member function was added to the CODB which could be
// used to initialize the CODBStaticStuff class before the
// procedures were forked. CommonobjectDB was changed
// to include a class member of the type CODBStaticStuff instead
// of inheriting behavior from CODBStaticStuff. A class new
II and delete operator were also added./***

#define MAXCODBBUFFERS 50

enum StructureType {MouseStruct, KeyboardStruct, AircraftStruct, RendererStruct, HotasStruct,
FastrakStruct, WSMStruct, PodStruct, AcftCtrlStruct, StateStruct, EnvironStruct,
PerformerWSMStruct, PlanetStruct, MoonStruct, SDEStruct, TDEStruct, CDEStruct,
AsteroidStruct, CometStruct, TimeStruct, TrailsStruct, SMStruct, SatStruct,
GUIStruct, DummyStruct,
WSMEntityStruct, WSMEventStruct, WSMMgtStruct,
WSMpfEntityStruct, WSMpfEventStruct,
OwnStateStruct, OwnMgtStruct, WSMGPSStruct,
PatientVitals, DoctorTreatment, IVPumpStruct, PatientWarmerStruct, DefibStruct,
WingmanStruct, CockpitStruct, RadarStruct, INSStruct, MFDStruct, LocalCoordStruct,
WeaponStruct

class CODBStaticStuff
I
protected:
public:

struct bufferstruct

StructureType typeoof-structure;
void *ptr tobuffer;
int sizeofT;

); //end buffer-struct

static CODBStaticStuff *StaticCODB;
bufferstruct list-of-buffers[MAX_CODBBUFFERS];

public:
void* operator new(size-t size)

if (StaticCODB == NULL)

StaticCODB (CODBStaticStuff*)pfMalloc(size, pfGetSharedArena());
//Initialize data structure
for(int j=0; j<MAXCODB_BUFFERS; j++)

B-3

{I/begin loop through buffers StaticCODB->list of buffers[j).ptrtobuffer
= NULL; StaticCODB->list_of_buffers[j].sizeof-T 0;

)I/end if !codb-initialized

return (StaticCODB);

void operator delete (void* ptr)

pfFree(ptr);

/; /end of CODBStaticStuff};

template <class T>
class Coinmonobj ectDB

I /begin class CommonObjectDB

public:
CODBStaticStuff *CODB;

comnmonObjectDB (StructureType);
void* operator new(size-t size);
void operator delete(void* ptr);
mnt Registered (StructureType) ;
void* BeginRead(StructureType);
void EndRead(StructureType);
void* BeginWrite(StructureType);
void EndWrite(StructureType);
void* BeginReadWrite(StructureType);
void EndReadwrite(StructureType);
void* BeginiMagic(StructureType);
void EndMagic (StructureType);

/; /end class CommronObjectDB

static void InitializeCODB()

CODBStaticStuff* X;
x = new CODBStaticStuff;

#endif

B-4

B .2. commonobidb.cc

#include "doublebuffer.h"
#include "commonobjdb.h"
#include <iostream.h>

*** 11 Class:
CommonObjectDB
/-
// Functionality: Provides a double buffering scheme in which to
// store data. Structure will store any type of
*/ data and prevent multiple concurrent writes.
// All users in a process using the CODB will
// be returned a common pointer that will
// be used as the pointer to gain access to the class.
/-
// Inherits from the CODBStaticStuff class which allows
// a template to maintain a static structure for
// numerous types of instantiations.
//
//
// Author: T. Adams and B. Zurita and D. Wells
/-

// Revision History:
II 24 Jan 96 TAA
// - Initial write 24 Jan 96
// 17 Apr 96 WDW
If - Magic stuff added
// 25 Apr 96 VBZ
// - Added AcftCtrlStruct, StateStruct to StructureType enumeration.
II 08 May 96 WDW

S- Added EnvironStruct, PerformerWSMStruct to StructureType enumeration.
II - upped the number of possible structs to 20
// 08 May 96 TAA
// changed BeginMagic and EndMagic to BeginReadWrite and EndReadWrite
II - overloaded BeginReadWrite and EndReadWrite to BeginMagic and EndMagic
// to support the other poor souls who have such a function name in
I/ their software.
II 08 May 96 WDW
If - Added EnvironStruct, PerformerWSMStruct to StructureType enumeration.
// - upped the number of possible structs to 20
II 06 Jun 96 GEW
I/ - Added PlanetStruct, MoonStruct
II 08 Jun 96 VBZ
// - Added HLDEStruct, LLDEStruct, CDEStruct to StructureType enumeration.
1/ 17 Jun 96 GEW
// - Added AsteroidStruct, CometStruct
II 18 Jun 96 GEW
II - Added TimeStruct, TailsStruct, SatStruct, SMStruct
II 20 Jun 96 GEW
I/ - Added GUIStruct
II 26 Jun 96 WDW
If - Added WSMEntityStruct, WSMEventStruct, WSMMgtStruct
// - Added OwnMgtStruct, OwnStateStruct (Own = Sending Struct to DIS Mgr)
// - Added WSMpfEventStruct, WSMpfEntityStruct
//--- NEED TO REMOVE: WSMStruct, StateStruct, PerformerWSMStruct
// 27 Jun 96 TAA
II - Changed Constructor method to store buffers in the static
II array in the position of their enumerated value (st).
II this eliminates the searching previously required.
II - Added a new static variable codbinitialized to
II determine when CODB was initialized.
II - Added MAX_CODB_BUFFERS constant for number of CODB buffers
II instead of using literal
II - Eliminated the FindStructure Routine
II - Changed BeginReadWrite and EndReadWrite to be able to
I/ write to any type of structure. Previously it worked
I/ incorrectly because the memcpy was on the wrong size of
I/ memory. This involved adding the size of the data type
If into the CODB Structure.

B-5

// 19 Jul 96 VBZ
// - Changed HLDEStruct to SDEStruct, and LLDEStruct to TDEStruct.
// 29 Jul 96 GEW
// - Added WSMGPSStruct
I/ 1 Aug 96 BWG
// - Added PatientVitals, DoctorTreatment
// 1 Aug 96 VBZ
// - Added WingmanStruct
// 09 Aug 96, VBZ

S- Copied entire contents of StructureType from the actual
// CODB in use by everyone. Steven Sheasby made some changes to
// DIS Manager, namely, he's not using WSMStruct anymore. Now
// he's using WSMEntityStruct instead.
// 4 Sep 96 BWG
// - Added Warmer, IV, Defib Structs
II 11 Sep 96 TAA
// - Combinded the two versions of CODB into one copy
// - added the following structures: CockpitStruct, RadarStruct,
// INSStruct, MFDStruct
// - Registered method to determine if a Structure has been
// registered in the CODB (taken from VBZ's implementation)
//01 Oct 96 TAA
// - Fixed a problem with CODS which occured when a new structure
// was added after a program forked. This caused both processes
// to have an inconsistent list-of-buffers data structure.
// This happened because the static members of the CODBStaticStuff
// class were being allocated from free store by the compiler
// and needed to be allocated from shared memory. The solution
// was to simulate static variables by ensuring that memory
// was only allocated once for them. This was accomplished
// by overloading the new operator in the CODBStaticStuff class
// to only allocate memory once for the class. In addition, a
// static member function was added to the CODB which could be
// used to initialize the CODBStaticStuff class before the
// procedures were forked. CommonObjectDB was changed
// to include a class member of the type CODBStaticStuff instead
// of inheriting behavior from CODBStaticStuff. A class new
// and delete operator were also added./* ** ** * ********* *** * *** *** * **** ** ** ** **** * * *** ** ** * ** ** * ** ** * *

//Initialize static variables
CODBStaticStuff* CODBStaticStuff::StaticCODB = NULL;

/**
// Function: Constructor
//
II Functionality: Creates a doublebuffer class based on T and
// the parameter st passed into constructor. If
// the same structure type is passed in the
// new structure is ignored.
/-

// Author: T. Adams and B. Zurita
//
// Revision History:
// 24 Jan 96 TAA
// - Initial write 24 Jan 95
// 27 Jun 96 TAA
// - Changed access method to store buffers in the static
// array in the position of their enumerated value (st).
// this eliminates the searching previously required./**
template<class T> CommonObjectDB<T>::CommonObjectDB(StructureType st)

//begin constructor
CODB = new CODBStaticStuff();
if (CODB->list-ofbuffers[st].ptr to buffer == NULL)

//begin if buffer hasn't been created
CODB->list_ofbuffers[st].type-of-structure = st; CODB-
>list_of_buffers[st].sizeof_T = sizeof(T); CODB-
>list_of_buffers[st].ptrto buffer =

(void*)(new DoubleBuffer<T>);
cerr << "Structure " << st << " is being created." << CODB->list_of_buffers[st].ptrto_buffer <<

created
else

//begin else buffer has been created

B-6

cerr << "Structure " << st << " already created." << CODB->list ofbuffers[st].ptr to-buffer < e
created

//end constructor

// Function: operator new
/-
// Functionality: Allocates the memory for a CommonObjectDB class
// from shared memory.
/-

// Author: T. Adams
//
// Revision History:
II 02 Oct 96 TAA
// - Initial write./**
template<class T>
void* CommonObjectDB<T>::operator new(size t size)

return((CommonObjectDB*)pfMalloc(size, pfGetSharedArena());

* ***

// Function: operator delete
/-

// Functionality: Frees the memory for a CommonObjectDB class. Il
II Author: T. Adams
//
// Revision History:
I/ 02 Oct 96 TAA
// -Initial write./**
template<class T>
void CommonObjectDB<T>::operator delete(void* ptr)
{

pfFree(ptr);
1;

/***
// Function: Registered
/-
// Functionality: Returns 0 (zero) if the structure in question
// hasn't been registered yet. Returns 1 if it
// has.
/-
// Author: T. Adams and B. Zurita
/-
// Revision History:
// 29 Jul 96 VBZ
// -Initial write.
* ***

template<class T>
int CommonObjectDB<T>::Registered(StructureType st)
{ //begin Registered
return !(CODB->listof-buffers[stj.ptr_to_buffer == NULL);

//end Registered
* ***

II Function: BeginRead
//
// Functionality: Returns the pointer to a structure that can
// be read by the calling class. First finds the
II appropriate buffer and then calls the
// identical routine for the doublebuffer class.
I-
// Author: T. Adams and B. Zurita
//
II Revision History:
II 24 Jan 95 TAA
II - Initial write 24 Jan 95
* ***

template<class T>
void* CommonObjectDB<T>::BeginRead(StructureType st)

B-7

//begin BeginRead
DoubleBuffer<T>* temp;

temp = (DoubleBuffer<T>*)CODB->listofbuffers[st].ptr_tobuffer;
return(((void*)temp->BeginRead)));

/ I/end BeginRead

/ */************ **

II Function: EndRead
//

II Functionality: Signals doublebuffer class that calling
I/ function is done reading the doublebuffer.
I/
II Author: T. Adams and B. Zurita
I/
II Revision History:
II 24 Jan 95 TAA
II - Initial write 24 Jan 95/* / **

template<class T>
void CommonObjectDB<T>::EndRead(StructureType st)
{ //begin EndRead

DoubleBuffer<T>* temp;
temp = (DoubleBuffer<T>*)CODB->list_of_buffers[st].ptrto_buffer;

temp->EndReado;
/ I/end EndRead

* ***

II Function: BeginWrite
//
// Functionality: Returns the pointer to a structure that can
// be written to by the calling class. First finds the
// appropriate buffer and then calls the
// identical routine for the doublebuffer class.
//
II Author: T. Adams and B. Zurita
//
// Revision History:
II 24 Jan 95 TAA
II - Initial write 24 Jan 95
/***

template<class T>
void* CommonobjectDB<T>::BeginWrite(StructureType st)
{ //begin BeginWrite

DoubleBuffer<T>* temp;
temp = (DoubleBuffer<T>*)CODB->listofbuffers[st].ptr-to_buffer;

return((void*)(temp->BeginWrite)));
//end BeginWrite

* ***

// Function: EndWrite
I-
II Functionality: Signals doublebuffer class that calling
II function is done writing to the doublebuffer.
//
// Author: T. Adams and B. Zurita
//
// Revision History:
II 24 Jan 95 TAA
II - Initial write 24 Jan 95
/***

template<class T>
void CommonobjectDB<T>::EndWrite(StructureType st)
{ //begin EndWrite

DoubleBuffer<T>* temp;
temp = (DoubleBuffer<T>*)CODB->listofbuffers[st].ptr_to_buffer;

temp->EndWrite();
I //end EndWrite

B**

B-8

I/ Function: BeginReadWrite
I-
// Functionality: Returns the pointer to a structure that can
II be written to by the calling class. First finds the
II appropriate buffer and then copies the information
II currently in the buffer over to the writer's location
// so that partial updates to the buffer are possible.
//

II Author: D. Wells and T. Adams
/-
II Revision History:
// 17 Apr 96 WDW
// - Initial write 17 Apr 96
// 27 Jun 96 TAA
// - Changed BeginReadWrite and EndReadWrite to be able to
// write to any type of structure. Previously it worked
// incorrectly because the memcpy was on the wrong size of
// memory. This invovled adding the size of the data type
// into the CODB Structure.
* ***

template<class T>
void* CommonObjectDB<T>::BeginReadWrite(StructureType st)
{ //begin BeginReadWrite

void* temp;
void* writeptr;

//set up the writing
DoubleBuffer<T>* tempw;
tempw = (DoubleBuffer<T>*)CODB->list-ofbuffers[st].ptr-tobuffer; writeptr tempw-
>BeginWrite();

//set up the reading
DoubleBuffer<T>* tempr;
tempr = (DoubleBuffer<T>*)CODB->list-ofbuffers[st].ptrtobuffer; temp (void
*)(tempr->BeginRead0);

//bitwise memory copy from reader to writer
memcpy(write_ptr, temp, CODB->listof-buffers[st].sizeofT);

//close up the open read semaphore
tempr->EndRead(;

//return the writer pointer
return(write-ptr);

I //end BeginReadWrite

* ***

I/ Function: EndReadWrite
//
II Functionality: Signals doublebuffer class that calling
II function is done writing to the doublebuffer. II
// Author: D. Wells and T. Adams
//

II Revision History:
II 24 Jan 96 TAA
II - Initial write 24 Jan 96
II 17 Apr 96 WDW
// - Copied and renamed for use as EndReadWrite
* ***

template<class T>
void CommonObjectDB<T>::EndReadWrite(StructureType st)
{ //begin EndReadWrite

DoubleBuffer<T>* temp;
temp = (DoubleBuffer<T>*)CODB->listofbuffers[st].ptr-tobuffer;

temp->EndWrite();
I //end EndReadWrite

B-9

II The following functions were the ancestors of BeginReadWrite
II and EndReadWrite. They were developed and named by D. Wells.
II T. Adams changed the functions as detailed in the comments
1/ and renamed the functions to BeginReadWrite
II and EndReadWrite.
* ***

template<class T>
void* CommonObjectDB<T>::BeginMagic(StructureType st)
{ //begin BeginReadWrite

return(BeginReadWrite(st));
} //end BeginMagic
* ***

template<class T>
void CommonObjectDB<T>::EndMagic(StructureType st)

//begin EndMagic
EndReadWrite(st);

) //end EndMagic
I**

B-I10

B .3. doublebuffer.h

#ifndef _DoubleBuffer
#define _DoubleBuffer

/ *

// Class: DoubleBuffer
I-
// Functionality: Provides a double buffer template for any structure.
// Fuctions can read and write from the doublebuffers
// at the same time. This is currently tested only
// for single processes. This class should be allocated
// with a new if the double buffer is to come from
// shared memory (Performer Arena).
//
II Author: T. Adams and B. Zurita
//
II Revision History:
II 17 Jan 96 TAA
II - Initial write 17 Jan 96
II 23 Feb 96 TAA
// - Removed static storage for buffers and replaced with dynamic
II allocation in constructor
II 5 Mar 96 VBZ
// - Incorporated semaphores.
II 12 Sep 96 TAA
II - Overloaded new operator to allow direct allocation of performer
// memory. Previously memory was allocated off the stack and
II allocated from performer (in fitting with how the shared memory
I/ was allocated by previous students).
// - Overloaded delete to undo what was done by new
// - Added destructor.
* ***

#include <ulocks.h> // Semaphore stuff.

template <class T>
class DoubleBuffer
{ //begin class DoubleBuffer
private:

int readcount;
II 5 Mar 96 int writecount;
II 5 Mar 96 int swapping-buffers;

T *readptr;
T *writeptr;

II Semaphore stuff, dummy is used as contents of shared arena. SharedDB
II is the pointer to that shared arena. The only reason for the shared
II arena is to provide a home for the semaphores.
int dummy;
ulock-t WriteAccess;
ulockt ReadAccess;
ulockt RdCtAccess;

//23 Feb 96 T first_buffer;
//23 Feb 96 T second-buffer;
public:

void *operator new(size-t);
void operator delete(void* ptr);
DoubleBuffer(void);
-DoubleBuffer(void);
T* BeginRead(void);
void EndRead(void);
T* BeginWrite(void);
void EndWrite(void);

1; //end class DoubleBuffer
#endif

B-11

Biblioraphy

[AMSE95] Amselem, Denis. "A Window on Shared Virtual Environments," Presence Volume 4,
Number 2: 130-145 (Spring 1995).

[ANDE93] Andersson, R. "A Real Experiment in Virtual Environments: A Virtual Batting Cage,"
Presence Volume 2, Number 1:16-33 (Winter 1993).

[ASTH93] Astheimer, P, W. Felger, and S. Muller. "Virtual Design: A generic VR system for
industrial applications," Computers & Graphics, An International Journal Volume 17,
Number 6: 671-677 (1993).

[BENS96] Zurita, B., "A Domain Independent Knowledge Based Architecture for Computer
Generated Forces," Masters Thesis, Air Force Institute of Technology (AU), Wright-
Patterson Air Force Base, OH, AFIT/GCS/ENG/96D-XX, December 1996.

[BOLA94] Bolas, Mark T., "Human Factors in the Design of an Immersive Display," IEEE
Computer Graphics and Applications. 55-59 (January 1994).

[CARL93] Carlsson, Christer and Olof Hagsand. "DIVE - A Platform for Multi-User Virtual
Environments," Computer Graphics, An International Journal Volume 17, Number 6:
663-669 (1993).

[CATE95] Cater, Joseph, and Stephen Huffman. "Use of the Remote Access Virtual Environment
Network (RAVEN) for Coordinated IVA-EVA Astronaut Training and Evaluation,"
Presence Volume 4, Number 2: 103-109 (Spring 1995).

[COOK92] Cooke, Joseph, Michael Zyda, David Pratt, and Robert McGhee. "NPSNET: Flight
Simulation Dynamic Modeling Using Quatemions," Presence Volume 1, Number 4:
404-420 (Fall 1992).

[DIAZ93] Diaz, Milt. The Photo-Realistic Virtual Cockpit. MS thesis, Air Force Institute of
Technology (AU), Wright-Patterson Air Force Base, OH, AFIT/GCS/ENG/93-07,
December 1993.

[ERIC93] Erichsen, Matthew Nick. Weapon System Sensor Integration for a DIS-Compatible
Virtual Cockpit. MS thesis, Air Force Institute of Technology (AU), Wright-Patterson
Air Force Base, OH, AFIT/GCS/ENG/93-07, December 1993.

[FAA95] Federal Aviation Administration. Reconfigurable Cockpit Station WWW Site,
http://www.tc.faa.gov/rcs/rcsdocs/adl95.html#RCS.

[FIGU93] Figueiredo, M., K. Bohm, and J. Teixeira. "Virtual Design: Advanced Interaction
Techniques in Virtual Environments," Computers & Graphics, An International Journal
Volume 17, Number 6: 655-661 (1993).

[GARC96] Garcia, B., "Design And Prototype Of The ART Virtual Emergency Room:A Distributed
Virtual Environment For Emergency Medical Simulation," Masters Thesis, Air Force
Institute of Technology (AU), Wright-Patterson Air Force Base, OH,
AFIT/GCS/ENG/96D-07, December 1996.

BIB-1

[GERH93] Gerhard, William Edward Jr. Weapon System Integration for the AFIT Virtual Cockpit.
MS thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base,
OH, AFIT/GCS/ENG/93-10, December 1993.

[GIVE95] Givens, Brett R. "Cockpit Display Prototyping for an Engineering Design Simulator,"
Proceedings of The IEEE 1995 National Aerospace and Electronics Conference,
NAECON 1995. 722-728, May 22-26, 1995.

[GRIE96] Grier, James. F-16 Pilot, Air Force Institute of Technology, Wright-Patterson Air Force
Base, OH. Personal interview. 31 October 1996.

[GUM94] Gum, Don R. "Engineering Flight Simulation, Capabilities and Future Direction for
Wright Laboratory." Informational Report for Visitors to Wright Laboratory's Control
Integration and Assessment Branch, WL/FIGD, Wright-Patterson Air Force Base, OH.
1994.

[HAGS96] Hagsand, Olaf. "Interactive Multiuser VEs in the DIVE System," IEEE MultiMedia
Volume 3, Number 1: 30-39 (Spring, 1996).

[HARV91] Harvey, Edward P. and Richard L. Schaffer. "The Capability of the Distributed
Interactive Simulation Network Standard to Support High Fidelity Aircraft Simulation,."
Proceedings of the Thirteenth Interservice/Industry Training Systems Conference,
Orlando, Florida, pp. 127-135, 1991.

[KEST94] Kestermann, Jim B. Immersing the User in a Virtual Environment: The AFIT
Information Pod Design and Implementation. MS thesis, Air Force Institute of
Technology (AU), Wright-Patterson Air Force Base, OH, AFIT/GCS/ENG/94D- 1-3,
December 1994.

[IEEE93] Institute of Electrical and Electronics Engineers, International Standard, ANSI/IEEE Std
1278-1993, Standard for Information Technology, Protocols for Distributed Interactive
Simulation, March 1993.

[LORA95] Loral. ModSAF Software Architecture and Overview Document, Version 1.5.1, Loral
Advanced Distributed Simulation Technology Program Office, ADST/WDLITR-95-
W003339B, 28 April 1995.

[MACE94] Macedonia, Michael, Michael Zyda, David Pratt, Paul Barham, and Steven Zeswitz."
NPSNET: A Network Software Architecture for Large-Scale Virtual Environments,"
Presence Volume 3, Number 4: 265-287 (Fall 1994).

[MCCA94] McCarty, W. Dean, Steven Sheasby, Philip Amburn, Martin Stytz, and Chip Switzer. "A
Virtual Cockpit for a Distributed Interactive Simulation," IEEE Computer Graphics and
Applications. 49-54, January 1994.

[MCLE92] McLendon, Patricia. IRIS Performer Programming Guide. Mountain View, California:
Silicon Graphics, Inc. 1992.

[MCDO91] McDonald, L. Bruce; Christina Bouwens, Ronald Hofer, Gene Wiehagen, Karen Danisas,
and James Shiflett. "Standard Protocol Data Units for Entity Information and Interaction
in a Distributed Interactive Simulation," Proceedings of the Thirteenth
Interservice/Industry Training Systems Conference. Orlando, Florida, 119-126, 1991.

BIB-2

[MILB95] Milbank, Ronald J. Designer's Workbench, 3.1 reference, Second Edition. Los Gatos,
California: Coryphaeus Software Inc. December 1995.

[MOSH86] Mosher, Charles Jr, George W. Sherouse, Peter H. Mills, Kevin L. Novins, Stephen M.
Pizer, Julian G. Rosenman, and Edward L. Chaney. "The Virtual Simulator",
Proceedings of 1986 Workshop on Interactive 3D Graphics. Chapel Hill, North
Carolina, 37-42, October 23-24, 1986.

[MULT94] MultiGen. MultiGen Modeler's Guide, Revision 14.0. San Jose, California: Software
System. March 1994.

[OGDE94] Ogden Air Logistics Center. User's Manual For The Block 25/30/32 SCU 2 AN/APG-68
Fire Control Radar OFP 7021, Ogden Air Logistics Center, Hill Air Force Base, Utah,
SCU 2OFP 7021, 12 May 1994.

[OLSE96] Olsen, Randy. F- 16 Weapon & Tactics Trainer Program, Wright-Patterson Air Force
Base, OH. Personal interview. 11 April 1996.

[ROHL94] Rohlf, John and James Helman. "IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics ," Proceedings of SIGGRAPH 94. 1-14, July 24-29
1994.

[ROY95] Roy, Trina, Carolina Cruz-Neira, and Thomas DeFanti. "Cosmic Worm in the CAVE:
Steering a High-Performance Computing Applications from a Virtual Environments,"
Presence Volume 4, Number 2: 130-145 (Spring 1995).

[RUMB91] Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorenson. Object-Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall
1991.

[SCRI94] Scribner, Kennard III. "Distributed Interactive Simulation and the War Breaker Zen
Regard Simulation, A Participant's Perspective," Proceedings of 1994 Royal
Aeronautical Society DIS Conference, 1994.

[SCHN95] Schneider, N.., "Dynamic Transfer of Control Between Manned and Unmanned
Simulation Actors," Masters Thesis, Air Force Institute of Technology (AU), Wright-
Patterson Air Force Base, OH, AFIT/GCS/ENG/95D-XX, December 1995.

[SHAW92] Shaw, Chris, Jiandong Liang, Mark Green, and Yunqi Sun. "The Decoupled Simulation
Model for Virtual Reality Systems," Proceedings ofACM Conference on Human
Factors in Computing Systems, 321-328, 3-7 May 1992.

[SHEA92] Sheasby, M., "Management of SIMNET and DIS Entities in Synthetic Environments,"
Masters Thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force
Base, OH, AFIT/GCS/ENG/92D-16, December 1992.

[SING95] Singhal, Sandeep, and David Cheriton. "Using a Position History-Based Protocol for
Distributed Object Visualization," Presence Volume 4, Number 2: 1-25, (Spring 1995).

[SNYD93] Snyder, M., "ObjectSim - A Reusable Object Oriented DIS Visual Simulation," Masters
Thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base, OH,
AFIT/GCS/ENG/93D-20, December 1993.

BIB-3

[STAR96] Stark, Thomas, Richard Weatherly, and Annette Wilson. "The High Level Architecture
(HLA) Interface Specification And Applications Programmer's Interface." Proceedings
14th DIS Workshop. March 11-15, 1996.

[STUR94] Sturman, D.J., and D. Zeltzer. "A Survey of Glove-based Input," IEEE Computer
Graphics and Applications. 30-39, (January 1994).

[STYT97] Stytz, Martin, Terry Adams, Brian Garcia, Steven Sheasby, and Brian Zurita,
"Developments in Rapid Prototyping and software Architecture for Distributed Virtual
Environments;" IEEE Software, to appear.

[STYT95] Stytz, Martin, Steven Sheasby, and Keith Shomper. "Using Software Containers and
Object-Oriented Design and Implementation to Build Distributed Virtual Environments,"
1-6, 1995.

[SWIT92] Switzer, J. C., "A Synthetic Environment Flight Simulator: The AFIT Virtual Cockpit,"
Masters Thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force
Base, OH, AFIT/GCS/ENG/92D-17, December 1992.

[ULST96a] Ulstead, Gary. F-16 Pilot, F-16 System Program Office, Wright-Patterson Air Force
Base, OH. Personal interview. 27 September 1996.

[ULST96b] Ulstead, Gary. F- 16 Pilot, F- 16 System Program Office, Wright-Patterson Air Force
Base, OH. Personal interview. 31 October 1996.

[WELL96] Wells, W., "Collaborative Workspaces Within Distributed Virtual Environments,"
Masters Thesis, Air Force Institute of Technology (AU), Wright-Patterson Air Force
Base, OH, AFIT/GCS/ENG/96D-28, December 1996.

[WL96] Wright Laboratory. PCCADS WWW Site,
http://www.wpafb.af.mil/flight/fcd/figp/figpl/pccads/pccads.htm.

[WILL96] Williams, G., "Solar System Modeler: A Distributed, Virtual Environment for Space
Visualization and GPS Navigation," Masters Thesis, Air Force Institute of Technology
(AU), Wright-Patterson Air Force Base, OH, AFIT/GCS/ENG/96D-29, December 1996.

[ZURI96] Zurita, B., "An Architecture For Computer Generated Forces in Complex Distributed
Virtual Environments," Masters Thesis, Air Force Institute of Technology (AU), Wright-
Patterson Air Force Base, OH, AFIT/GCS/ENG/96D-38, December 1996.

BIB-4

Captain Terry A. Adams,... . ~ He graduated fron

Crestview High School in 1985 and entered undergraduate studies at Bowling Omeen State University in

Bowling Green. Ohio. He graduated with a Bachelor of Science degree in Computer Sces" in May 198.

Fie was enrolled in Reserve Officer.'Training Corps while in college and received hit comission upon

graduastion on 5 May 1989.

His first assignment was as a Software Development Manager at Wright-Pattermo Air Force Bas.

While at Wright-Patterson, he also served as a Flight Simulation Software Engineer and an Executive

Officer. His second assignment was in Las Vegas. Nevada working as a Software Enginee and Software

Team Manager. In May 1995. he entered the School of Engineering. Air Force Institute of Technology.

His follow-on assignment is to ACC/SC at Langley Air Force Be.

VITA4)

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Dec 96 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

REQUIREMENTS, DESIGN, AND DEVELOPMENT OF A RAPIDLY
RECONFIGURABLE, PHOTO-REALISTIC, VIRTUAL COCKPIT PROTOTYPE

6. AUTHOR(S)
Captain Terry A. Adams, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Institute of Technology REPORT NUMBER

2750 P Street
WPAFB, OH 45433-7765 AFIT/GCS/ENG/96D-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; Distribution unlimited

13. ABSTRACT (Maximum 200 words)

The United States Air Force uses aircraft flight simulators for pilot training and mission rehearsal. They use a variety of
simulators for this task ranging with prices ranging from $400,000 to $30,000,000. These simulators have specialized
hardware that restricts reuse of their components and increases maintenance costs. Air Education and Training Command
wants to reduce simulators cost and improve availability to the operational commands by supporting research in virtual
reality flight simulators. This thesis looks at the development of a reconfigurable virtual cockpit in a distributed virtual
environment that can be used for different aircraft as well as training scenarios. The thesis effort builds on a F-15 virtual
cockpit previously developed at AFIT, by creating a F-16. The Rapidly Reconfigurable Virtual Cockpit (RRVC) allows
users to switch between an F-15 and F-16 in the middle of a simulation. All software models and aircraft geometry files are
updated to reflect the current aircraft. The ability of a distributed virtual environment to support two unique aircraft flight
simulators in a single application was encouraging. With the development of more aircraft, a single application could be
provided to the operational pilot community that would support many aircraft at a fraction of the cost of today's flight
simulators.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Flight Simulators, Cockpits 125

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available aalblt otepbi.Etradtoa
icug. ay, 88).Mntie an yea if e a are limitations or special markings in all capitals (e.g.
(e.g. 1 Jan 88). Must cite at least the year.NFRNRETA)

NOFORN, REL, [TAR).

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. Statements on Technical Documents."
10 Jun 87 - 30 Jun 88). DOE See authorities.

Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On DOD Leave blank.
classified documents enter the title classification DOE Enter DOE distribution categories from
in parentheses. the Standard Distribution for

Unclassified Scientific and Technical
Block 5. Funding Numbers. To include contract

and grant numbers; may include program element Reports.

number(s), project number(s), task number(s), and NASA - Leave blank.
work unit number(s). Use the following labels: NTIS - Leave blank.

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum 200
G - Grant TA - Task
PE - Program WU - Work Unit words) factual summary of the most significant

Element Accession No. information contained in the report.

Block 6. Author(s). Name(s) of person(s) Block 14. Subject Terms. Keywords or phrases
responsible for writing the report, performing the identifying major subjects in the report.
research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price code

Block 8. Performing Organization Report Number. (NTIS only).

Enter the unique alphanumeric report number(s)
assigned by the organization performing the Blocks 17. - 19. Security Classifications. Self-
report. explanatory. Enter U.S. Security Classification in

accordance with U.S. Security Regulations (i.e.,
Block 9. Sponsoring/Monitoring Agency Name(s) UNCLASSIFIED). If form contains classified
and Address(es). Self-explanatory. information, stamp classification on the top and

Block 10. Sponsoring/Monitoring Agency Report bottom of the page.
Number. (If known)

Block 20. Limitation of Abstract. This block must
Block 11. Supplementary Notes. Enter be completed to assign a limitation to the abstract.
information not included elsewhere such as: Enter either UL (unlimited) or SAR (same as report).
Prepared in cooperation with ; Trans. of ; An entry in this block is necessary if the abstract is
To be published in.... When a report is revised,
include a statement whether the new report to be limited. If blank, the abstract is assumed to
supersedes or supplements the older report. be unlimited.

Standard Form 298 Back (Rev. 2-89)

